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Abstract

The deployment of Robotic Process Automation (RPA) has grown increasingly popular in

industry and organisations whose ambition is to enhance organisational operating efficiency

embrace RPA for automating the standard business processes. Efficiency gain as the most

outstanding benefit is always highlighted but unintended consequences of RPA

implementation, such as reduced process flexibility and trade-off against potential

organisation transformation, are overlooked and less discussed. This paper studies the

dynamic effects of RPA on routine evolution over time using a network simulation model.

The research study reveals the impacts of RPA on organisational processes in terms of

process complexity, structural change in process, probability of phase change and efficiency

gain by exploring and interpreting important RPA deployment features, including sequence

length and frequency threshold qualifying suitable sequences of actions to automate through

RPA. With that, we can understand how the process of organisational routines adaptation is

impacted by RPA and highlight new insights about the trade-off between efficiency gain and

potential digital transformation in organisations. Also, this research provides well-rounded

answers on whether and how organisations could implement RPA to achieve higher

operational efficiency while maintaining some degree of process flexibility and preserving

the potential of process adaptation and digital innovation.
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1 Introduction

1.1 Background and Research Motivation

Robotic process automation (RPA) has gained popularity in industry in recent years. RPA

leverages software robots to automate the processing of repetitive and standard tasks and thus

reduce unnecessary manual work. As a type of digital technology, RPA enhances efficiency

in organisational operations by automating and simplifying those business processes qualified

for RPA.

The efficiency gain as a result of RPA application creates significant enthusiasm towards

implementing RPA for automation in organisations, which gives rise to significant uptake in

practice. However, the benefits of RPA have been overemphasised and there is not much

discussion on the possible negative consequences of RPA. For example, RPA, which relies on

the designed robot to execute processes autonomously, may reduce process flexibility and

thus makes it difficult to modify and adapt to meet new demands or change requests (Syed et

al., 2020). As a result, implementing RPA for automation may hinder an organisation’s ability

to be adaptive. Further, process complexity, structural change in process as well as the

potential for digital innovation and organisational process transformation are relevant and

important factors to organisations, which can be impacted by RPA implementation and lead

to unintended outcomes. Therefore, there is a need to understand how the process of

organisational routines adaptation is impacted by RPA and study how the important design

features of RPA intervention, such as memory, sequence occurrence frequency and length,

might impact the above-mentioned factors. The findings will give a better understanding and

provide well-rounded answers on whether an organisation should adopt RPA and if so how

they might want to implement it if they want to ensure that the process of organisational

routines adaptation is well managed and healthy.

Studying the impacts of RPA from the angle of routine evolution enables organisations to

have a deeper understanding of the trade-off between potential gains and any possible

negative side effects of applying RPA. Further, routine evolution takes place over time and

the impacts on organisations in terms of process complexity, structural change in process, the

likelihood of digital transformation and efficiency gain vary at different stages of routine

evolution under the influence of external disturbance from RPA. The dynamic concept
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highlights the change in the effects that are spread over time, which provides a more nuanced

understanding of how a process responds to changes and how routines evolve in both short

and long term. Thus, it is important to study the dynamic impacts of RPA on routine

evolution in organisations so that we can obtain a full picture of how routine evolution

impacts organisations at different timestamps. With that, organisations can also know whether

they should implement RPA for automation at various stages of the organisational life cycle

and how to implement RPA to maximise the intended benefits at the current phase.

1.2 Robotic Process Automation (RPA)

RPA is a technology for automation of business processes, which relies on software robots

running algorithms that are created with a set of rules and instructions on a physical or virtual

machine. RPA mimics human-computer interactions (Wellmann, Stierle, Dunzer & Matzner,

2020), utilises a range of software as tools and leverages various platforms to simplify and

automate business processes (Van der Aalst, Bichler & Heinzl, 2018), especially those

frequent and repetitive computer-based processes which require much manual effort in the

workplace. RPA is implemented to automate mundane tasks or time-consuming manual

processes, such as copy-paste actions, file transfer, document upload, etc (Aguirre &

Rodriguez, 2017), which enhances efficiency in organisations and reduces human error in

executing tasks. Common RPA tools include Automation Anywhere, UiPath, SS&C Blue

Prism, etc.

Below is an example of RPA applied to automate mundane processes in the banking industry

to reduce manual effort and human error. When a customer opens a new account with a bank,

the personal particulars of the account holder will be collected by the banker and

complimentary documents will be required for submission to validate his financial status and

personal information. His data and copies of those supporting documents will then be

uploaded and stored in the client database. Without RPA, these processes have to be manually

carried out by the bankers who have to type in the information in the Excel file and upload

the documents to the bank’s internal portal. With RPA, the entire process can be as simple as

clicking the start button to let the robot run. The robot will copy and paste the required

information, consolidate the complimentary documents and finally upload and save the data

in the database.
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RPA can carry out tasks error-free at a high volume and fast speed with minimal human

intervention (Wellmann et al., 2020). RPA promises to boost efficiency gains in organisations

as it reduces human attention when the processes are executed by robots. There are a few

important deployment features and eligibility criteria of RPA, namely sequence length and

sequence frequency threshold, which significantly determine whether adopting RPA for

business automation can achieve the expected efficiency gain (Wellmann et al., 2020). More

specifically, sequence length refers to the number of actions or steps in a sequence that will

be automated via RPA and sequence frequency threshold is a cutoff frequency value used to

determine the minimum number of occurrences required for a particular sequence of actions

to be automated with RPA. These two factors are important RPA deployment characteristics

whose impacts on routine evolution will be studied later using the simulation model.

1.3 Processes and Routines under Digitalisation

Process and routines are essential in facilitating operations and accomplishing tasks in

organisations (Howard-Grenville & Rerup, 2017). Processes refer to those standardised and

well-defined operating procedures which organise the tasks to be completed in order to

achieve the goal whereas routines are how work usually gets done in reality, especially

repetitive and recognizable patterns of interdependent organisational actions (Feldman &

Pentland, 2003). Also, processes typically don't organically change unless the management

decides to update them and prepare for the change of goals or standard procedures. However,

routines are variations in how work actually gets done, which can organically evolve over

time and respond to the changing environment (Brown & Duguid, 2000).

A process can drift, which means to undergo incremental change over time (Bose, van der

Aalst, Žliobaitë & Pechenizkiy, 2011; Ciborra et al. 2000). When a process drifts, it learns,

responds and adapts (Bickhard and Campbell, 2003; Pentland, Feldman, Becker & Liu,

2012), which can be favourable or harmful depending on the circumstances. Drift changes the

way a process is performed, thus affecting the outcome of routine evolution over time. The

beneficial outcome is that routine drift and evolution inspire more new paths, lead to drastic

structural change in the process and finally settle into a stable state with a new dominant path

established (Bak, 1996; Frigg, 2003). This is also known as process self-organisation, which

means that a process can evolve as it undergoes constant change and ongoing operation

without intervention from external agents (Feldman & Pentland, 2003; Foster, 1997).
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However, drift can also lead to disastrous and unexpected consequences, such as drift into

complexity catastrophe.

Intended as a mechanism to improve coordination and control (Berente, Lyytinen, Yoo &

King, 2016), digital technologies (such as RAP) are often used as tools to improve process

execution and business operations. Under the influence of digital technology, the drift

behaviour of a process will be impacted significantly as digitisation constrains the way a

process is performed (Pentland, Liu, Kremser & Haerem, 2020). Digital technologies possess

material properties, such as memorizability which is used to retain and store information

(Yoo, 2010) and it can be programmed to guide users on the next action based on past

experience and decisions. Besides, the programmability of digital technology will eliminate

all variation from the process involved. In the context of RPA, those segments of a process

where automation is implemented will leave no room for variation or new workarounds as

those sub-parts of a process become automated and thus deterministic. As a result, the

structural change and the establishment of new dominant paths can be altered when digital

transformation technologies, such as RPA, are implemented, which potentially affects the

likelihood of undergoing digital innovation and organisation transformation. Thus, it is

meaningful to study how digital technology, such as RPA, interacts with process drift and

routine evolution.

Processes and routines are crucial and fundamental factors in organisations to perform and

accomplish daily work. RPA, as a type of digital technology widely used in organisations, can

change and disrupt how processes evolve. RPA can also reshape how organisations perform

processes to deliver business value efficiently to their clients.

2 Project Objectives

2.1 Project Objectives

The primary objective of this study is to investigate the effects of RPA deployment on

business processes in organisations. We seek to explore and identify the impacts of RPA on

process evolution over time in terms of process complexity, the magnitude of accumulated

change, the probability of transformative phase changes in process structure and efficiency

gains. Using a network simulation model, we study how these effects change when RPA

4



deployment characteristics vary, including the length of RPA sequence of actions and the

occurrence frequency threshold set for selecting suitable candidates of sequences of actions

for RPA. This study seeks to generate some insights about the trade-off between the business

value of automation tool applications in terms of efficiency gain and potential digital

transformation in organisations. Our results culminate in a framework on how organisations

should leverage RPA to not only boost operational efficiency but also allow for healthy and

effective digital transformation in organisations.

2.2 Research Questions

Research Question 1: How does introducing RPA influence process evolution over time in

terms of process complexity, the probability of transformative phase changes in process

structure, the magnitude of accumulated change and efficiency gain?

Research Question 2: How are those effects, such as process complexity, drift probability, the

magnitude of change and efficiency gain, affected by the RPA deployment features which

include the length of the sequence of actions that is automated via RPA and the occurrence

frequency threshold used to qualify a sequence of actions for RPA implementation?

3 Literature Review

Pentland et al. (2020) developed a theory about how drift influences digitised processes due

to the generative nature of digital technologies by analysing the impacts of incremental

process changes on process complexity and drastic phase changes. He developed a simulation

model to identify the emergence or dissolution of paths and observe the structural changes in

the network. Based on simulation results, it is concluded that digital technology can afford

variations and the creation of new paths, thus leading to bursts in process complexity and

affecting the likelihood and magnitude of transformative endogenous phase changes to

different extents at different levels of the lexicon of actions, reinforcement, and modularity.

In their paper, the phenomena of the sudden bursts in complexity and dramatic structural

change in the network were interpreted as either positive impacts: opportunities for

adaptation and enhanced efficiency, or negative impacts: complexity disaster and

dysfunctionality. Further, they highlighted that in real-world contexts, adaptive systems

attempt and generate new paths while considering the historical processes and knowledge,

finally leading to self-reinforcing complexity growth and even phase change. Their paper
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contributes to the baseline simulation model in my research and the phenomena observed in

their paper lays the foundation for my study on the dynamic impacts of RPA, as a form of

automation, on digitised processes. Different from the generative nature of digitalisation

affording more variations in Pentland et al.’s paper, the deterministic nature of RPA in my

study restricts variations to some extent but enables higher efficiency to be achieved. The

dependent variables in his simulation model are also selected in my study to set a comparison

benchmark between standard but evolutionary processes and RPA-enabled processes. The

impacts of digitalisation on organisations may vary depending on the nature of the

technology that is being introduced into processes, not always being generative due to high

variation in nature. Thus, my study expands the scope of the study from process drift and

transformation further to the influence of RPA, specifically a type of automation technology

focusing on efficiency boost. I analyse how those RPA deployment features affect process

complexity and routine evolution, thus giving greater efficiency in organisations.

Wellmann et al. (2020) developed a framework for categorising and evaluating the potential

candidates for RPA in business processes. His paper provided several guidelines for RPA

practitioners to evaluate whether a process is worth the RPA implementation effort. He

identified thirteen important process activity characteristics of RPA which are further

categorised into five main perspectives as evaluation criteria, namely task, time, data, system

and human. Some important criteria include frequency, the number of execution steps, the

number of variations to execution flow in the business, the number of unsuccessful

terminations in tasks, etc. These characteristics highlight the distinguishing features of RPA

as a type of digital and automation technology. Wellmann et al. also tested and verified their

framework in a practical setting by analysing the event log of a publicly available dataset

related to a P2P process of a multinational coating and paint enterprise. They concluded that

the framework provides effective insights into identifying the proper candidates for RPA.

Wellmann et al.’s framework identifies the special characteristics of RPA, which contributes

to the blueprint of the RPA simulation model in my study. I included important RPA

implementation features, such as length, frequency and variation, in the simulated network to

mimic the actual RPA process. However, one limitation of their paper is that the framework

was only evaluated based on one dataset, and not all the criteria in his proposed framework

were tested for generalisability. Also, their paper only focuses on how to qualify RPA process

candidates and the immediate impacts of RPA which is efficiency gain but neglects how

implementing RPA might impact organisational adaptability in the long run. My study further
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analyses the impact of RPA on routine evolution in a holistic and dynamic manner with

greater robustness.

4 Research Design

4.1 Overview of the Simulation Model

In this paper, an evolving network model is used to simulate business process change over

time to develop a theory about the dynamic effects of RPA on processes and routine evolution

in organisations. Simulation models create an environment where the effects of digital

intervention can be clearly demonstrated via quantitative metrics. We are thus able to

visualise the interaction of mechanisms under the influence of a range of variables of interest

over many process interactions (Davis, Eisenhardt & Bingham, 2007; Simon 1996).

Therefore, in this paper, simulations are used as an effective tool for theory construction.

Since processes naturally evolve over time, the effects of deploying RPA on business process

evolution can only be identified by analysing how RPA intervenes and transforms this

existing benchmark digitised process evolution found by Pentland et al. (2020). Thus, my

simulation model includes important parameters that can be shaped by digitisation and

mentioned in Pentland’s paper, such as the probability of workarounds and other variations

(V) (Alter 2014; Ciborra et al. 2000), and the span of the process’ memory (R) (Argote 2013;

Darr, Argote & Epple, 1995; Holan & Phillips 2004). Besides, two more variables

representing the unique deployment characteristics of RPA, namely the length of RPA

sequence of actions (L) and RPA occurrence frequency threshold (F), are also included in the

simulation model to further study the impacts of RPA.

A weighted directed network graph is used to model the sequence of actions in a business

process, which represents a series of actions of completing a task in an organisation. The

network trajectory changes when new edges form or existing edges are removed over time.

The network is observed over many iterations by varying the values of the parameters to

identify the changes in average process complexity, the magnitude of change in the network

structure, the probability of transformative phase change in the process and efficiency gain.
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4.2 Model and Important Mechanisms

Task Network

The Task network represents the possible ways of getting a task or business process done in

the organisation. Networks of sequentially related actions which are connected by edges are

modelled in a weighted directed graph with a source and sink (Pentland et al. 2012; Pentland,

Recker & Wyner, 2015). A node represents an action or event in the process (Anderson and

Robey 2017; Strong et al. 2014), and an edge with a specified direction represents a

sequential relationship or a path from one action to the next action (Pentland et al., 2020).

The weight on an edge refers to the transition probability from one action to the next possible

action. The source represents the first step that kicks off a business process, while the sink

represents the final action that concludes the business process and generates the outcomes.

The source and sink are fixed throughout process evolution because the start and end points

of a business process in organisations usually remain the same even when digitalisation and

automation are carried out by a blend of digital technologies and people. A path in the

network is a list of connected edges and each possible path from source to sink represents one

way to carry out a process.

As a process evolves, the network will experience incremental structural change over time as

edge formation and dissolution take place, which potentially give rise to surges in network

complexity. Edge formation and dissolution as described below are important mechanisms

influencing process complexity over time.

Edge Formation

Edge formation is driven by variations (Pentland et al. 2020). In a process, the next action

happens sequentially and spontaneously once its previous action has been completed, which

is represented by the connection established by an existing edge between two nodes in the

network. However, as the process evolves, there is some probability of encountering an

exception or issue and there is a need for re-arranging, identifying a new next action and

jumping from the current node to another node which is different from the one connected by

the original edge. For example, in the bank account opening process, if a client would like to

update and resubmit the complementary financial documents that he has sent to the banker,

there is a need to re-engineer some intermediate steps to make sure that the new documents

are stored in the database and all the relevant information is changed accordingly. Variation
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creates a new workaround (Alter 2014), which is represented by the edge formation

mechanism in the network model. Edge formation stimulated the branching out of new edges

which give rise to alternative paths in the network.

Edge Dissolution

Retention results in edge dissolution. In the long enactment of organisational processes,

remembering and forgetting co-exist. There is a limit on how much an organisational process

can remember and reinforce the future paths based on its historical information during its

evolution over time. Those edges which are usually taken will stay in the process memory,

which is also known as retention, and enhance the likelihood of taking the same path again in

the future. However, those edges which are visited less frequently in the network will fade

over time and finally be forgotten. This results in edge dissolution due to the property of

constrained process memory.

Matrix Representations

To model the process evolution and development and removal of edges among nodes in the

network, three N x N (where N represents the number of nodes) matrices are used in the

simulation model. First, a Markov transition matrix is used to record the transition

probability from one node to another node, which determines how likely the path between

two nodes will be taken. Second, an adjacency matrix is used to remember which pairs of

nodes are connected, which records the network structure and can be used to trace the number

of possible paths. Finally, a history matrix memorises the number of times each node has

been visited which is still remembered by the process, or in other words, within the retention.

The history matrix is updated every process iteration by including the new routine and

forgetting the sequences of actions when the memory span runs out. The history matrix is

also an important input used in updating the transition matrix with transition probabilities

between nodes.

Implementing RPA in the Simulation Model

RPA is a digital technology which can automate some segments of an organisational process.

To stimulate the effects of RPA in the simulation model, an algorithm of identifying the

suitable candidates of sequences for RPA and implementing RPA on them is required.
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As the process evolves, new edges are formed and historical edges outside of the memory

span are dissolved (i.e., removed). Throughout the process iterations, the algorithm first

identifies the sequences of actions that occur repetitively with occurrence frequency

exceeding the threshold (F). As suggested by Wellmann et al. (2020), a process can be

qualified for RPA if a series of actions happens frequently, and occurrence frequency is an

important criterion of qualifying a process for RPA. Thus, in the simulation model, the

sequence of actions appearing with a frequency higher than the occurrence frequency

threshold (F) will then be automated. Once automated, the process memory and

corresponding transition probability of relevant nodes will be updated accordingly. More

specifically, when a sequence of actions (e.g., Node 3 → Node 5) has been automated by

RPA, this sequence becomes deterministic and it will always be remembered. The transition

probability from the first node in the RPA sequence to the next node (e.g., from Node 3 to

Node 5) will be fixed at 1.00 for subsequent process iterations. Due to the deterministic

nature of RPA, the sequences which have been automated by RPA will never be forgotten

throughout the entire process of routine evolution and they are removed from the memory

altogether such that those new and less frequent sequences of actions can be retained in the

memory and accumulate, which allows RPA to consistently happen in the rest of process

iterations.

4.3 Independent Variables

The model has multiple parameters as the independent variables in the simulation model,

which are variables of research interest. The independent variables include parameters that

could affect the behaviour of process evolution and other variables relevant to the

characteristics of RPA deployment. We would like to find out how the task network will

evolve over time at various levels of these parameters.

4.3.1 Number of Nodes (N)

This parameter represents how many nodes there are in the network simulation model and

how many actions are involved in a process. Under the context of RPA, it represents how

many specific steps are required to complete a task or business process within an

organisation. This parameter is fixed throughout the simulation (i.e. all process iterations).
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4.3.2 Retention (R)

Retention restricts how much the historical process iterations can affect the current process

iteration, which defines the extent of the influence of past information on the present.

Retention is measured by how many past process iterations are remembered by the existing

process, which is implemented as a fixed length of memory window saving historical paths in

the simulation model. When the most recent sequence of actions is added to the process

memory which exceeds the maximum memory span or retention, the oldest sequence of

actions in the retention window is forgotten and removed (Pentland et al., 2020).

In the case of complete automation, which represents the sequence of actions where RPA is

deployed, a deterministic programme will fully take over and control the sequence of actions

that will take place. In this case, under the effect of RPA, this particular sequence of actions

will no longer be added to retention again and history becomes irrelevant to its further

evolution. More specially, it means that the sequence automated by RPA will not be affected

by the incoming new memory from the subsequent iterations. Thus, the effect of retention on

those RPA sequences of actions will be zero. However, on other fragments of a process where

RPA has not taken place, it is not a deterministic program at all. Retention plays a role in

providing valuable historical information and choices about what has been done in the past,

what is remembered from past experiences and what can be done next.

The process of storing important documents digitally in an organisation is used to be

frequently performed by manually selecting the required documents, uploading the

documents to the company database through an online portal, and finally sending an email to

the department manager to inform him about successful upload and documentation. With the

help of RPA, the entire process can be automated by following the same sequence of steps but

executed with a software robot. This is an example of how the historical sequences of action

provide guidance and information based on past experience in process evolution. After

automating the process by RPA, as the process undergoes further evolution, those past

manual actions will be forgotten over time as the deterministic programme of RPA is more

frequently applied. Thus, when we would like to introduce RPA to an evolving business

process, where a human agent interacts with a deterministic program, introducing retention in

the simulation model is important. Also, if a sequence of actions happens frequently in the

retention window, we will have some ideas about selecting potential candidates for RPA
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because the purpose of RPA is to automate those repetitive sequences of actions. This is why

the length of retention is an important factor which may impact the process evolution under

the influence of RPA implementation.

When we would like to enable a longer memory span and let the system remember more

historical choices or paths, we could increase the value of R. However, more memory is not

necessarily better because based on Pentland’s study, low values of retention are associated

with a lower inertia and greater flexibility (Pentland et al. 2012). Adaptive systems need to

have not only learning but also forgetting mechanisms, which means that those very historical

paths containing outdated information have to be forgotten at some point. Otherwise, the

oldest memories may hinder the discovery of new and innovative paths in the process

evolution and also affect the decisions on the suitable candidates of sequences for PRA.

4.3.3 Variation (V)

Variation represents the probability of the need for workarounds (Alter 2014) which means

that some sequential rearrangement in the sequence of actions when the process encounters

an issue or an exception (Pentland et al., 2020). When an issue occurs unexpectedly, the

simulation model randomly picks the next action from the possible destination node based on

the weights of existing edges. V = 0 implies that there are no exceptions, and the process

stays on track without any variation, which happens at the segments of the process where

RPA is implemented. When V = 0.01, there is a 1% chance that an issue will arise at each step

or transition and the next action is randomly determined.

In the context of RPA, when a sequence of action is fully automated by RPA, the algorithm

becomes deterministic and there are no workarounds or variations. Variation has no impact on

those sequences of actions that are fully programmed. However, for those actions where RPA

is not deployed, variation may take place due to human intervention in the process of

innovating and re-engineering the existing business process. In reality, when deploying RPA

on a business process, business analysts will intervene and examine the entire process flow to

identify and remove unnecessary actions or re-design the sequence of actions to achieve

higher efficiency and faster output delivery of the digital system. In this case, some variations

or workarounds will be introduced to the business process. For example, in the case that a

retail company needs to document the return request from its customer, business analysts find

out that keying in the return request and details into an Excel file and then uploading the file
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across multiple systems and databases are not efficient. Thus, he decided to re-engineer the

sequence of actions and enabled the direct change of details on the company portal without

manually logging the information into Excel files. From this example, a new exception path

is enacted and a new way of getting the same thing done is developed. This is how variation

may take place in a business process before automation takes place.

4.3.4 Length of RPA Sequence of Actions (L)

The length of the RPA sequence of actions is a parameter specific to the characteristics of

RPA deployment. In the business context of RPA, it refers to the number of steps or actions to

be performed in order to complete the segment of an organisational process that is automated

by RPA. In the simulation model, it refers to the number of nodes involved in the sequence of

actions which is automated by RPA. For example, when L = 3, it implies that only those

sequences of actions consisting of three nodes can be automated, such as Node 3 → Node 5

→ Node 6 (where L = 3) but not Node 3 → Node 4 (where L = 2).

In the business context, the length of the RPA sequence of actions determines how

complicated the RPA process can be. A longer RPA sequence of actions means that more

steps are involved and the RPA robot has to execute more actions sequentially, which reflects

the complexity of a process in the organisational setting. By common business practice, RPA

is seldom implemented on very long sequences of actions because it is hard to trace back the

source of error if the robot fails. Besides, those shorter RPA sequences of actions could be

easily qualified for RPA due to the higher likelihood of having a short sequence of actions

occur repetitively in an organisational process.

4.3.5 Occurrence Frequency Threshold for RPA (F)

The occurrence frequency threshold for RPA refers to the occurrence frequency benchmark

used to qualify a sequence of actions for automation by RPA. Once the frequency of a

sequence of actions occurring exceeds the threshold value F, the sequence will be automated

by RPA. This is a parameter representing one of the important features of RPA

implementation. In the simulation model, frequency threshold is computed as the proportion

of the frequency of a sequence out of the entire retention length. It is a proportion value

which cannot go beyond 1for RPA to occur. For example, occurrence frequency threshold F =

0.5 means that only those sequences that occur more than or equal to 50% times in the
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retention window will be qualified for automation by RPA. The higher the frequency

threshold for RPA, the harder it is for a sequence of tasks to be qualified for RPA.

In the organisational context, only sequences or routines which occur frequently and

repetitively will be automated using RPA to boost operational efficiency. Those less

frequently occurring sequences of actions are unlikely to be automated because less

efficiency gain can be obtained from automating and digitising them.

4.4 Dependent Variables

To study the dynamic effects of RPA on processes and routine evolution, we use four

measures to quantify the impacts, namely process complexity, the magnitude of change, the

probability of phase change and efficiency gain.

4.4.1 Process Complexity

Process complexity represents how complicated a process or task is. A process with higher

complexity means that there are more ways of getting the process completed. In the

simulation model, complexity is measured by counting the possible simple paths through the

network which represents the process (Hærem, Pentland & Miller, 2015), which is the total

number of acyclic paths from source to sink in the network. Thus, process complexity is high

if a process can be completed via a range of possible ways, while complexity is low if a

process can successfully be done by only a few paths.

As we apply a large network model in the simulation, due to the constraint of time and

computational power, we adopted the strategy of measuring the complexity of a program by

computing the number of linearly independent paths V(G) which is equal to e - n + p, where e

represents the total number of edges, n represents the number of vertices and p represents the

number of connected components in the network (McCabe, 1976). An appropriate scaling

factor is added to the equation to generate the complexity index which represents process

complexity (Goh & Pentland, 2019).

4.4.2 Probability of Phase Change

The probability of phase change is also known as drift probability. A phase change is

identified when there is a sudden burst in process complexity immediately followed by a low
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complexity after the surge. As the process evolves, the complexity of the simulated process

gradually increases and can spike up by several orders of magnitude. Finally, process

complexity falls back and reaches a relatively stable and low level. Due to the complexity

burst, the network experiences drastic structural change, which may give rise to the birth of

new dominant paths and transition to a new state of the network (Pentland et al., 2020). The

presence of complexity burst is strong evidence of incremental change resulting in potential

phase change or known as process transformation.

When quantifying the probability of phase change, we only consider and count the cases

where incremental change ultimately leads to much lower complexity and fewer possible

paths after the complexity burst. The probability of phase change is simply the fraction of

simulated trajectories that meet these criteria. We would like to observe how the probability

of phase change is affected by RPA; in other words, whether RPA promotes or impedes

opportunities to develop new dominant paths and undergo a structural transformation during

process evolution.

4.4.3 Magnitude of Change

The magnitude of change in a process is measured by comparing the evolving network across

a series of process iterations with respect to the original network at the start of process

evolution. It indicates how much the network has changed from the original network over

time in terms of its structure, which further implies how much the process has undergone

structural change over process iterations. In the simulation model, the magnitude of change is

computed using the sum of bitwise XOR of two adjacency matrices by identifying the

differences in edges and summing them up. The two adjacency matrices are the adjacency

matrix of the network at the start of process evolution, which is the simple happy path, and

the adjacency matrix of the network at some process iteration later during process evolution.

4.4.4 Efficiency Gain

The concept of finding the shortest path in the network is used to model efficiency in the

simulation model. Efficiency means how fast a task or process can be completed and the

concept of the shortest path also implies the fastest way of passing through a network from

source to sink. Efficiency gain is measured by the reduction in the length of the shortest path

from the source to the sink of the final network at the end of process evolution from the

original length of the simple happy path. To identify the shortest path in the network, we
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applied Dijkstra's algorithm which can find the shortest path from the start node to the end

node in a directed acyclic graph with equal weights (Javaid, 2013).

Efficiency gain is a very important benefit of RPA, which is also the main reason for

automating business processes in reality. Thus, we would like to model efficiency gain in the

simulation model to find out what factors affect efficiency and help boost efficiency gain with

the implementation of RPA.

4.5 Simulation Model Initialisation

The simulation always starts from a straightforward path which means connecting all the

nodes from source to sink sequentially based on the index of a node in increasing order e.g. 1,

2, … 99, 100. This is known as a simple happy path. As the process goes on, edges are

formed and removed over time and the process drifts.

Below is a table of the initialised values of important parameters in the simulation model. For

parameters R, V, F, L, three values are carefully picked to represent low, medium and high

levels of each parameter. These parameters are treated as categorical variables to draw

qualitative findings.

Table 1. Model Parameters

Parameters Simulated Values Explanation

Iterations 5000

The process will evolve for 5000 process iterations
which can be interpreted as time in this model. Each
iteration gives a new network at that time stamp,
which is also known as one trajectory.

N 100

We use a proper and realistic number of actions (N =
100) to represent a business process in an
organisation, which will form the fundamental
network that we could draw conclusions and develop
theory from.

R

Low: 50

Medium: 100

High: 150

The simulated values of R are suggested as
reasonable values by Pentland et al. (2020). The R
values in ascending order represent low, medium and
high retention, respectively.
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V

Low: 0.001

Medium: 0.005

High: 0.01

Three values of variations V are recommended by
Pentland et al. (2020). The V values in ascending
order represent low, medium and high variation,
respectively.

L

Low: 3

Medium: 5

High: 10

Three values of L are carefully picked to be much
lower than 100 because it is usually not realistic to
automate a very long sequence of actions in an
actual business context. The L values in ascending
order represent low, medium and high lengths of
RPA sequence of actions respectively.

F

Low: 0.2

Medium: 0.5

High: 0.9

We simulate three levels of frequency threshold,
which represent low, medium and high levels of F.
Low frequency threshold means that it is quite easy
for a sequence to be qualified for RPA while high
frequency threshold means that it is hard for a
sequence to be qualified for RPA unless it occupies
the majority of the space in the retention window.

The process evolution for each parameter setting mentioned above will be run 1000 times and

averages are computed for analysis to obtain stable results and statistics and draw reliable

conclusions.

5 Model Implementation and Results

5.1 Simulation Results

5.1.1 Process Complexity

To understand the effects of RPA on process complexity, we observe the time series of

process complexity over 5000 process iterations using line charts and then we further look

into how the end-of-evolution process complexity varies with different parameter settings of

R, V, F, and L under the influence of RPA deployment using bar plots and regression results.

Each evolution (i.e. simulation) is repeated 1000 times and averages are taken to obtain stable

and reliable results for analysis.

In Figure 1, line charts are plotted to visualise the time series of process complexity over all

the process iterations under different settings of parameters, which highlights the progressive
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change in process complexity at various stages of evolution due to RPA implementation.

Horizontally, R increases with the same value of V. Vertically, V increases with the same

value of R. The x-axis means process iterations, which can be interpreted as time. Line

colours represent different levels of L and line styles vary for different levels of F. Since

process complexity is very large in magnitude for some combinations of the parameters, for

ease of presentation, base-10 logarithm values of process complexity are computed and

displayed below. The scale of all nine line graphs is standardised for the convenience of

comparison.

All the lines in Figure 1 demonstrate that process complexity increases at the start of process

evolution and declines after the peak and peaks happen roughly at the same process iteration

or timestamp across all the different parameter settings of R, V, F, L. Complexity rises and

declines at a faster pace for greater values of R and V, which makes the shape of complexity

peak more obvious. Also, near the end of process evolution, all the lines show an increasingly

gentler gradient, which implies that process complexity tends to stabilise and converge to a

value at the end of evolution which can sustain in the long run. Observing the line graphs

horizontally and vertically, we can see that the magnitude of the process complexity peak

increases with increasing levels of R and V. Observing different colours of lines which

represent different levels of L, we can observe that low L tends to have the greatest process

complexity throughout all process iterations, followed by medium L and high L. With greater

values of R and V, the gaps between the lines with different settings of F and L in one graph

become wider, which suggests consistent interaction among them over the entire evolution

process. Further, by observing various line types, we can see that varying F does not have a

significant impact on process complexity over time, no matter whether it is at the start, peak

or end of evolution.
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Figure 1. Line Charts of Base-10 Logarithm of Process Complexity over 5000 Process Iterations for Low, Medium and High Levels of V, R, F, L

To take a closer look at the final outcome of routine evolution with RPA implementation on

process complexity, bar charts are plotted below in Figure 2, which show how the

end-of-evolution process complexity differs for various combinations of V, R, F and L.

Horizontally, R increases with the same value of V. Vertically, V increases with the same

value of R. The x-axis means frequency threshold F. Colours of the bars represent different

values of L and the value of L increases with colour intensity. Similarly, base-10 logarithm
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values of process complexity are displayed in the bar charts and the scale of all nine bar

charts is standardised for the convenience of comparison.

Observing the bar charts in Figure 2 horizontally, we could visualise the effects of retention R

on end-of-evolution process complexity. The observation is that process complexity increases

with increasing R. Higher value of R means a longer memory span, which suggests that more

historical choices and prior sequences of actions can be remembered by the system. This will

enable the system to draw more information based on past experiences and learn further,

which stimulates edge formation. As a result, increasing the memory span will increase the

end-of-evolution process complexity.

Observing the bar charts in Figure 2 vertically, we could conclude that increasing V will

result in higher end-of-evolution process complexity. This is because higher variation means

a higher probability of randomly jumping to the next node and thus a higher likelihood of

having workarounds. There will be more new edges formed which enhances the process

complexity at the end of all process iterations. In other words, with a higher value of variation

V, we could obtain a much more complex network at the end of process iterations, which

means higher end-of-evolution process complexity.

Observing every group of bars in Figure 2, increasing L has minimal effect on

end-of-evolution process complexity. However, when considering the interaction between F

and L, we could observe that at a low level of F, increasing L will decrease the

end-of-evolution process complexity. When the frequency threshold F is low, it is more likely

for a sequence to be qualified as a suitable candidate for automation by RPA. Thus, for a

sequence of actions with a longer length, once the long sequence gets automated, the

sequence from one node to the next node is determined by the RPA. This will prevent future

formation of new edges stemming from the starting node of RPA sequence, which will lead to

a lower end-of-evolution process complexity of the final network formed after 5000

iterations.

Observing each bar chart across its x-axis value F in Figure 2, we can see that

end-of-evolution process complexity does not vary much as F changes. This implies that the

frequency threshold has negligible effects on end-of-evolution process complexity.
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Figure 2. Bar Charts of Average Base-10 Logarithm of End-of-Evolution Process Complexity at Low, Medium and High Levels of V, R, F, L

To confirm that the findings from the visual inspection are statistically valid, ordinary least

squares (OLS) regression with two-way interactions is run on 81000 observations of

end-of-evolution process complexity to identify statistically significant parameters and

interaction terms. As parameters are in three levels (i.e. low, medium, high), categorical

variables are used in the regression model and thus dummy coding is applied to create binary

indicators for two out of three levels of the categorical variable. The OLS regression results

are specified in Table 2 below.
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Based on the regression results in Table 2, we could notice that V and R at low and medium

levels (highlighted in green) are all statistically significant with the p-value less than 0.01 and

a greater magnitude of coefficient. This indicates that R and V are significant factors which

may influence the end-of-evolution process complexity. Even though the p-value of F and L

at low and medium levels is less than 0.05 (highlighted in orange) suggesting that they can be

statistically significant, the much smaller magnitude of coefficient implies that the impacts of

F and L without considering interactions are minimal. By observing the interaction terms

between F and L at low and medium levels (highlighted in red), the interaction terms all have

p-value less than 0.01, which suggests that interaction terms between F and L are statistically

significant and F and L altogether have a significant impact on end-of-evolution process

complexity. Since the coefficient of Low F ⨉ Medium L is 0.029 which is smaller than the

coefficient of Low F ⨉ Low L being 0.048, our visual inspection on that at a low level of F,

increasing L will decrease the end-of-evolution process complexity is validated.

Table 2. Regression Results of Base-10 Logarithm of End-of-Evolution Process Complexity
OLS Regression Results

Dependent Variable Base-10 Logarithm of End-of-Evolution Process Complexity

No. of Observations 81000

Adjusted R-squared 0.768

F-statistics 8393

Prob (F-statistics) 0.000

Variable Coefficient Standard Error P-value

Low V -0.863*** 0.010 0.000

Medium V -0.262*** 0.010 0.000

Low R -2.028*** 0.010 0.000

Medium R -1.254*** 0.010 0.000

Low F -0.066*** 0.010 0.000

Medium F -0.089*** 0.010 0.000

Low L 0.036*** 0.010 0.000

Medium L 0.022** 0.010 0.029

Low V ⨉ Low R 0.524*** 0.009 0.000

Low V ⨉Medium R 0.380*** 0.009 0.000

Low V ⨉ Low F 0.043*** 0.009 0.000

Low V ⨉Medium F 0.052*** 0.009 0.000

Low V ⨉ Low L 0.000 0.009 0.969

Low V ⨉Medium L 0.008 0.009 0.406

Medium V ⨉ Low R 0.063*** 0.009 0.000

Medium V ⨉Medium R 0.008 0.009 0.412

Medium V ⨉ Low F 0.044*** 0.009 0.000

Medium V ⨉Medium F 0.032*** 0.009 0.000

Medium V ⨉ Low L -0.004 0.009 0.695

22



Medium V ⨉Medium L -0.017* 0.009 0.064

Low R ⨉ Low F 0.019** 0.009 0.035

Low R ⨉Medium F 0.035*** 0.009 0.000

Low R ⨉ Low L -0.052*** 0.009 0.000

Low R ⨉Medium L -0.032*** 0.009 0.000

Medium R ⨉ Low F 0.011 0.009 0.221

Medium R ⨉Medium F 0.038*** 0.009 0.000

Medium R ⨉ Low L -0.031*** 0.009 0.000

Medium R ⨉Medium L -0.004 0.009 0.654

Low F ⨉ Low L 0.048*** 0.009 0.000

Low F ⨉Medium L 0.029*** 0.009 0.002

Medium F ⨉ Low L 0.045*** 0.009 0.000

Medium F ⨉Medium L 0.033*** 0.009 0.000

Constant 2.555*** 0.009 0.000
Remarks: *** p <0.01, ** p <0.05, * p<0.1

5.1.2 Probability of Phase Change

As mentioned earlier, a phase change is identified when there is a sudden burst in process

complexity immediately followed by a low complexity after the surge. Before we look into

how the probability of phase change is impacted by parameter settings of R, V, F, L under the

influence of RPA deployment, we need to first observe how and when complexity bursts take

place over 5000 process iterations and how complexity bursts are affected over time with

varying values of parameters.

Figure 3 is a trajectory of the time series of process complexity over 5000 process iterations.

We can observe that there is a sudden burst of complexity at about iteration = 600, which is

followed by later periods of much lower complexity when complexity declines over further

iterations. After the complexity burst, the process can settle into a new dominant path that is

characterised by much lower complexity. There is a clear cut-off between the stage of

complexity surge and the stage of complexity recession until a stable state across the entire

period of 5000 process iterations. The stable state achieved is known as a phase change.

A complexity burst happens when new edges form at a faster pace than edge dissolution.

Under the influence of RPA implementation, we could observe that the initial burst of

complexity is due to the consistent formation of new edges in the network. Once there are

repeating sequences of actions in the process memory, those sequences will be automated by

RPA. With RPA taking place consistently on some segments of the process, the network after

automation will be somewhat fixed to achieve higher operating efficiency. At this moment, a
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new dominant path will be formed and reinforced over iterations. As a result, there will be

less room for new edge formation and the process complexity after RPA is deployed

extensively will decline and finally reach a stable level. By looking at Figure 3 below, we

notice an interesting observation when we contrast the complexity burst in the RPA network

(solid line) with Pentland’s original model which is a network without RPA deployed (dashed

line). The original model without RPA reaches a greater magnitude of complexity burst than

the model with RPA implemented. This is because once RPA happens, the sequence of

actions will have fixed edges and the edge formation from the nodes in the RPA sequence

will become impossible, which results in a lower maximum magnitude of complexity

achieved.

Figure 3. Process Complexity Burst and the Following Decline with and without RPA Implementation (V = 0.005, R = 100, F = 0.2, L = 5)

Thus, we can conclude that RPA as an automation technology can still experience complexity

bursts and the generative nature of process evolution is preserved. However, RPA reduces the

magnitude of the complexity burst in business processes. Also, RPA can better stabilise the

network by significantly lowering the complexity and quickly settling into a rigid dominant

path. More process iterations after a complexity burst will not provide more opportunities for

sequences of actions that have been automated to undergo further phase change or digital

innovation.

To further study the impact on complexity burst with respect to varying levels of parameters

R and V, we have an aggregate plot in Figure 4. We fix the values of other parameters (i.e. F

and L) to ensure that other variables do not have additional impacts on the complexity burst.
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When we observe the graphs in Figure 4 horizontally, we could find that with increasing

retention R, the complexity burst happens at a later time and the maximum magnitude of the

complexity burst increases. When the retention length is longer, it takes more process

iterations to reach full retention. As a result, the complexity burst takes place at a slightly

later time. The increase in the maximum magnitude of complexity burst with increasing R is

because when the memory space or retention length R increases, more historical choices or

past sequences of actions are remembered. There will be more prior information retained,

which leads to more new edges formed in the network and thus a greater surge in process

complexity. Besides these, we could also observe when R increases, the rate of the decline in

process complexity after the burst is slower. RPA is the major reason for the fast complexity

declination after the burst. When a process can remember more historical sequences of

actions, it is harder to fulfil the RPA requirement on the frequency threshold. Thus, RPA

deployment may happen at a slower rate, which leads to a slower pace of the recession in

process complexity after the complexity burst.

When we observe the graphs in Figure 4 vertically, we could find that with increasing

variation V, the complexity burst happens at an earlier time and the maximum magnitude of

the complexity burst increases. When the probability of finding a workaround is higher, new

edges are formed much faster than edge removal. A surge in the number of new edges will

increase the process complexity rapidly, which leads to the observation that complexity burst

happens sooner with a much larger magnitude of complexity burst with increasing value of

variation V. Besides these observations, we can also see that when V increases, the rate of

decline in process complexity after the burst is faster. An increase in V implies higher graph

density as the network becomes more complex with more edges introduced. When graph

density is higher, variations will be more likely to reinforce an existing edge (Pentland,

2020). When the existing edges are reinforced and they frequently appear in the retention, it

is more likely to be chosen as suitable candidates for RPA. As a result, with increasing V, the

process will have more processes undergoing automation which will not be further affected

by any workarounds, thus the complexity will decline faster after the complexity burst.
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Figure 4. Line Charts of Base-10 Logarithm of Process Complexity over 5000 Process Iterations at Low, Medium and High Levels of V, R with

Fixed F = 0.2 and Fixed L = 5

To understand the impact on complexity burst with respect to varying values of parameters F

and L, we have an aggregate plot in Figure 5. In the setting, we fix the values of other

parameters (i.e. R and V) to ensure that their effects on the complexity burst are controlled.

As observed in the graphs in Figure 5 horizontally, with an increasing value of L, the

maximum magnitude of the complexity burst decreases. This is because when the length of

sequences of actions for RPA is longer, more nodes in the network will have their next node

determined and fixed in the sequence. This reduces the probability of edge formation as more

actions in a sequence are programmed and automated, which leads to a lower maximum
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magnitude of complexity burst. However, the effect of frequency threshold F on the

complexity burst is random and hard to be patterned because we notice minimal changes

when viewing the graphs in Figure 5 vertically.

Figure 5. Line Charts of Base-10 Logarithm of Process Complexity over 5000 Process Iterations at Low, Medium and High Levels of F, L with

Fixed V = 0.005 and Fixed R = 100

To understand the effects of RPA on the probability of phase change, we observe how the

probability of phase change throughout the entire process evolution varies with different

parameter settings of R, V, F, and L using bar plots and regression results. Each evolution or

so-called simulation is repeated 1000 times and averages are taken to obtain stable and

reliable results for analysis.
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Figure 6 contains bar charts which show the probability of phase change at various

combinations of parameters V, R, F and L. Horizontally, R increases with the same value of

V. Vertically, V increases with the same value of R. The x-axis means frequency threshold F.

Colours of the bars represent different values of L and the value of L increases with colour

intensity. The scale of all nine bar charts is standardised from 0 to 1 for the convenience of

comparison.

Observing the bar charts in Figure 6 horizontally, we could visualise the effects of retention R

on the probability of phase change. The observation is that with increasing levels of R, drift

probability tends to increase. The increase in drift probability is more significant for a

transition from a low retention R to a medium retention R. This is because a too-short

memory span will not provide sufficient historical information for a process to settle down

into a new path quickly and undergo transformation. A too-long memory span raises the

difficulty of having some sequence meet the criteria of RPA and the process freezes more

slowly and tends to preserve a more complex network structure after the complexity burst.

This explains why a further increase in memory span from medium to high retention will not

further boost the drift probability by a lot. This suggests the importance of setting an

appropriate length of retention for processes in order to enable and encourage transformation.

Observing the bar charts in Figure 6 vertically, we could conclude that increasing V has

minimal effects on the probability of phase change. This may be attributed to the effect of

RPA: as more sequences in a process get automated by RPA, variation V will no longer affect

the edge formation and edge dissolution on the nodes in the automated sequence. This means

that the effects of varying V values will have marginal effects on drift probability for

processes with RPA deployed.

Observing every group of bars in Figure 6, we could observe a surprising result which is that

increasing L has minimal effects on the probability of phase change. This implies that the

length of the sequence of actions for RPA has negligible effects on the drift probability, in

other words, the probability of having the evolving process settle into a new dominant path.

Observing each graph across its x-axis value F in Figure 6, another surprising result can also

be observed, which is that the probability of phase change does not vary much as F changes.
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This implies that the frequency threshold has negligible effects on the drift probability and

likelihood of whether a process undergoes a transformation.

Figure 6. Bar Charts of the Probability of Phase Change throughout 5000 Process Iterations at Low, Medium and High Levels of V, R, F, L

To confirm that the findings from visual inspections are statistically valid, logistic regression

with two-way interactions is run on 81000 observations of the probability of phase change to

identify statistically significant parameters and interaction terms. As parameters are in three

levels (i.e. low, medium, high), categorical variables are used in the regression model and
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thus dummy coding is applied to create binary indicators for two out of three levels of the

categorical variable. The logistic regression results are specified in Table 3 below.

Based on the regression results in Table 3, we could observe that low R is statistically

significant with p-value < 0.01 but high R is statistically insignificant with p-value being

0.576 > 0.1 (highlighted in green). The coefficient of low R is negative and its magnitude is

relatively higher. Thus, we can conclude that increasing R from low to medium levels will

increase the probability of phase change. Observing the coefficient of V and its interaction

terms (highlighted in orange), the coefficients of medium and high V are significant with

comparably large magnitudes (i.e. 6.048 and 6.402). Also, the coefficient of the interaction

term Medium V ⨉ Low R is statistically significant. This highlights that increasing V from

low to medium level significantly increases the probability of phase change when it has low

R but increasing V from medium to high level only brings a gentle further increase in drift

probability. Most of the interaction terms of V are statistically insignificant because p-value is

more than 0.1, which suggests that V has marginal effects on the probability of phase change

under the influence of RPA implementation. Observing the p-values of F and its interaction

terms with V, R, L (highlighted in red), we could find that almost all have p-values more than

0.1 and thus the coefficients are statistically insignificant. This confirms that F has marginal

effects on the probability of phase change. Similarly, the interaction terms of L with R and F

(highlighted in purple) are statistically insignificant because most have p-value more than

0.05, which confirms our previous finding that L has minimal effects on drift probability

under the influence of RPA implementation.

Table 3. Regression Results of the Probability of Phase Change
Logistic Regression Results using Maximum Likelihood Estimation (MLE)

Dependent Variable Probability of Phase Change

No. of Observations 81000

Pseudo R-squared 0.2358

Log-Likelihood -32244

log-likelihood ratio p-value 0.000

Variable Coefficient Standard Error P-value

Medium V 6.048*** 0.446 0.000

High V 6.402*** 0.446 0.000

Low R -2.480*** 0.737 0.001

High R -0.166 0.297 0.576

Medium F -0.416 0.368 0.258

High F 0.051 0.337 0.879
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Low L 1.154*** 0.436 0.008

Medium L 1.069** 0.441 0.015

Medium V ⨉ Low R 1.483** 0.736 0.044

Medium V ⨉ High R -0.110 0.295 0.709

Medium V ⨉Medium F 0.303 0.366 0.408

Medium V ⨉ High F 0.039 0.336 0.908

Medium V ⨉ Low L -0.984** 0.436 0.024

Medium V ⨉Medium L -0.926** 0.441 0.036

High V ⨉ Low R 0.960 0.736 0.192

High V ⨉ High R 0.212 0.295 0.472

High V ⨉Medium F 0.295 0.366 0.421

High V ⨉ High F 0.050 0.336 0.881

High V ⨉ Low L -1.110** 0.436 0.011

High V ⨉Medium L -1.100** 0.441 0.013

Low R ⨉Medium F -0.050 0.062 0.421

Low R ⨉ High F -0.120* 0.062 0.051

Low R ⨉ Low L -0.020 0.063 0.747

Low R ⨉Medium L 0.040 0.063 0.525

High R ⨉Medium F 0.102* 0.053 0.054

High R ⨉ High F 0.028 0.053 0.600

High R ⨉ Low L 0.002 0.053 0.965

High R ⨉Medium L -0.001 0.053 0.979

Medium F ⨉ Low L 0.052 0.058 0.369

Medium F ⨉Medium L 0.054 0.058 0.348

High F ⨉ Low L -0.053 0.057 0.354

High F ⨉Medium L -0.086 0.057 0.134

Constant -6.630*** 0.446 0.000
Remarks: *** p <0.01, ** p <0.05, * p<0.1

5.1.3 Magnitude of Change

To understand the effects of RPA on the magnitude of change in process from the initial

simple happy path, we observe the time series of the magnitude of change over 5000 process

iterations using line charts and then we further look into how the end-of-evolution magnitude

of change as compared to the initial simple happy path varies with different parameter

settings of R, V, F, and L under the influence of RPA deployment using bar plots and

regression results. Each evolution or so-called simulation is repeated 1000 times and averages

are taken to obtain stable and reliable results for analysis.

Line charts are plotted in Figure 7 to visualise the time series of the magnitude of change

over all the 5000 process iterations under different settings of parameters, which highlights

the progressive change in magnitude of change at various stages of evolution due to RPA

implementation. Horizontally, R increases with the same value of V. Vertically, V increases
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with the same value of R. The x-axis means process iterations, which can be interpreted as

time. Line colours represent different levels of L and line styles vary for different levels of F.

The scale of all nine line graphs is standardised for the convenience of comparison.

All the lines in Figure 7 demonstrate that magnitude of change in process increases

significantly at the start of process evolution across all the different parameter settings of R,

V, F, L. Increasing R implies that the initial surge in the magnitude of change is at a faster

speed. At a low level of R, the magnitude of change rises with an increasingly gentler

gradient over time and tends to stabilise and converge to a fixed value sooner. However, at

medium and high levels of R, the initial surge in the magnitude of change slows down at

about the 1000th process iteration and then experiences another quick increase after a short

period of stagnation. Besides, greater V also increases the likelihood of having the magnitude

of change stabilise near the end of process evolution. Horizontally, we could see that the

converging value of the magnitude of change at the end of evolution decreases at low V, stays

constant at medium V and increases at high V. Observing different colours of lines which

represent different levels of L, we can observe that low L tends to have the greatest

magnitude of change throughout all process iterations, followed by medium L and high L.

Further, by observing various line types, we can see that varying F does not have a significant

impact on the magnitude of change over time as the lines are quite close to one another.
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Figure 7. Line Charts of Magnitude of Change in Process from the Original Network over 5000 Process Iterations at Low, Medium and High

Levels of V, R, F, L

To take a closer look at the magnitude of change in the final network with respect to the

initial simple happy path under the influence of RPA implementation, bar charts are plotted in

Figure 8, which show how the end-of-evolution magnitude of change from the initial path

differs for various combinations of V, R, F and L. Horizontally, R increases with the same

value of V. Vertically, V increases with the same value of R. The x-axis means frequency

threshold F. Colours of the bars represent different values of L and the value of L increases

33



with colour intensity. The scale of all nine bar charts is standardised for the convenience of

comparison.

Observing the bar charts in Figure 8 horizontally, we could visualise the effects of retention

on the magnitude of change. To analyse the effect of R on the magnitude of change, we have

to consider the interaction between V and R. As observed, when V is at a low level (i.e. V =

0.001), increasing retention length R will lead to a lower magnitude of change across all

combinations of F and L. When V is s at a medium level (i.e. V = 0.005), increasing retention

length R will have negligible effects on the magnitude of change across all settings of F and

L. When V is s at a high level (i.e. V = 0.01), increasing retention length R will lead to a

higher magnitude of change across all settings of F and L. When variation is low, increasing

retention means that it is harder for a sequence of action to qualify for RPA and the structural

change is less vigorous, which leads to a lower magnitude of change. When variation is high,

the graph will have a higher density. Now even with longer retention, the variation is very

likely to reinforce an existing edge, which makes some sequence of action repetitively appear

in the memory. This will help the sequence qualify for RPA. With automation, there will be

more drastic changes in the structure of the network, which leads to a higher magnitude of

change in the final network as compared to the initial simple happy path.

Observing the bar charts in Figure 8 vertically, we could conclude that increasing V will

result in a higher magnitude of change. This is because higher variation means a higher

probability of randomly jumping to the next node and thus a higher likelihood of having

workarounds. The final network will undergo more drastic structural changes at the end of all

the 5000 iterations, which leads to a higher magnitude of change with an increasing variation.

Observing every group of bars in Figure 8, increasing L generally decreases the magnitude of

change. RPA is the major source of drastic structural change in routine evolution. When the

sequence length for RPA is longer, it is harder to find qualified sequences to undergo RPA

and the likelihood of a sequence of actions undergoing RPA is lower. With less automation

taking place, the magnitude of change will be lower. However, there is some exception at a

high frequency threshold F: increasing L leads to a higher magnitude of change when

variation is at a high state. When the frequency threshold F is higher, which means the

sequence has appeared very frequently in recent history. Given a high V, which suggests that

there is a higher probability of workarounds, automating a long sequence of actions can bring
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more drastic structural change to the existing network than automating shorter slices of

actions. As a result, the end-of-evolution magnitude of change will be larger in this case.

Observing each graph across its x-axis value F in Figure 8, the magnitude of change does not

vary much as F changes. This implies that the frequency threshold has negligible effects on

the magnitude of change. This can be due to the strong power of automation in fixing the

structure of the network as once a sequence of actions (e.g. from node 4 to node 5) is

automated, all the possible edges beginning from node 4 become redundant as the probability

of entering node 5 after node 4 is 100%. Thus, regardless of the frequency threshold,

throughout the 5000 iterations, once some sequences are automated by RPA, its impact on the

entire structural change is huge. However, there is a special case where for a high V,

increasing F will lead to a more significant increase in the magnitude of change. At high V,

there is a higher probability of workarounds and it is more likely to create innovative paths by

jumping much forward towards the last node. Once a sequence of actions gets automated due

to its high frequency, we could think that an excellent sequence which is very worth

automation gets programmed, which leads to more significant structural change as compared

to automating shorter slices of sequence.
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Figure 8. Bar Charts of Average End-of-Evolution Magnitude of Change in Process from the Original Simple Happy Path at Low, Medium and

High Levels of V, R, F, L

To confirm that the findings from the visual inspection are statistically valid, OLS regression

with two-way interactions is run on 81000 observations of the end-of-evolution magnitude of

change in process to identify statistically significant parameters and interaction terms. As

parameters are in three levels (i.e. low, medium, high), categorical variables are used in the

regression model and thus dummy coding is applied to create binary indicators for two out of
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three levels of the categorical variable. The OLS regression results are specified in Table 4

below.

Table 4. Regression Results of the End-of-Evolution Magnitude of Change in Process
OLS Regression Results

Dependent Variable End-of-Evolution Magnitude of Change in Process

No. of Observations 81000

Adjusted R-squared 0.854

F-statistics 1.476e+04

Prob (F-statistics) 0.000

Variable Coefficient Standard Error P-value

Medium V 14.932*** 0.260 0.000

High V 19.002*** 0.260 0.000

Medium R -28.727*** 0.260 0.000

High R -51.381*** 0.260 0.000

Medium F -0.996*** 0.260 0.000

High F -4.546*** 0.260 0.000

Medium L -2.713*** 0.260 0.000

High L -10.591*** 0.260 0.000

Medium V ⨉Medium R 31.745*** 0.241 0.000

Medium V ⨉ High R 49.093*** 0.241 0.000

Medium V ⨉Medium F 0.020 0.241 0.934

Medium V ⨉ High F 2.907*** 0.241 0.000

Medium V ⨉Medium L -0.976*** 0.241 0.000

Medium V ⨉ High L -1.864*** 0.241 0.000

High V ⨉Medium R 40.121*** 0.241 0.000

High V ⨉ High R 68.977*** 0.241 0.000

High V ⨉Medium F 0.847*** 0.241 0.000

High V ⨉ High F 6.291*** 0.241 0.000

High V ⨉Medium L -0.627*** 0.241 0.009

High V ⨉ High L -0.911*** 0.241 0.000

Medium R ⨉Medium F 0.423* 0.241 0.079

Medium R ⨉ High F 2.014*** 0.241 0.000

Medium R ⨉Medium L 0.340 0.241 0.158

Medium R ⨉ High L 1.130*** 0.241 0.000

High R ⨉Medium F 1.105*** 0.241 0.000

High R ⨉ High F 2.661*** 0.241 0.000

High R ⨉Medium L 0.950*** 0.241 0.000

High R⨉ High L 2.614*** 0.241 0.000

Medium F ⨉Medium L -0.049 0.241 0.839

Medium F ⨉ High L 0.122 0.241 0.612

High F ⨉Medium L 0.894*** 0.241 0.000

High F ⨉ High L 6.520*** 0.241 0.000

Constant 93.168*** 0.230 0.000
Remarks: *** p <0.01, ** p <0.05, * p<0.1
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Based on the regression results in Table 4, we could notice that V and R at medium and high

levels as well as their interaction terms (highlighted in green) are all statistically significant

with p-value less than 0.01 and a much greater magnitude of coefficient. This indicates that R

and V as well as their interaction terms are significant factors which may influence the

end-of-evolution magnitude of change in process. Besides, L is also a statistically significant

parameter because the p-value of L at medium and high levels is less than 0.05 and

coefficient has a greater magnitude (highlighted in orange). Since the coefficient of High L is

-10.591 which is lower than the coefficient of Medium L being -2.713, it validates that

decreasing L is correlated with a higher magnitude of change. By observing the interaction

terms between F and High V (highlighted in red), the interaction terms all have p-value less

than 0.01, which suggests that interaction terms between F and High V are statistically

significant and F and High V altogether have a significant impact on the end-of-evolution

magnitude of change. As the coefficient of High V ⨉ Medium F is 0.847 which is smaller

than the coefficient of High V ⨉ High F being 6.291, it is testified that at a high level of V,

increasing F will increase the end-of-evolution magnitude of change.

5.1.4 Efficiency

To understand the effects of RPA on efficiency gain from the initial simple happy path, we

observe the time series of efficiency gain over 5000 process iterations using line charts and

then we further look into how the ultimate efficiency gain at the end of evolution from the

initial simple happy path varies with different parameter settings of R, V, F, and L under the

influence of RPA deployment using bar plots and regression results. Each evolution or

so-called simulation is repeated 1000 times and averages are taken to obtain stable and

reliable results for analysis.

Line charts are plotted in Figure 9 to visualise the time series of efficiency gain over all 5000

process iterations under different settings of parameters, which highlights the progressive

change in efficiency gain at various stages of evolution due to RPA implementation.

Horizontally, R increases with the same value of V. Vertically, V increases with the same

value of R. The x-axis means process iterations, which can be interpreted as time. Line

colours represent different levels of L and line styles vary for different levels of F. The scale

of all nine line graphs is standardised for the convenience of comparison.
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All the lines in Figure 9 show that efficiency gain at the start of routine evolution increases

sharply and then gradually converges to a stable stage over time across all the different

parameter settings of R, V, F, L. Observing the line graphs vertically, low V gives rise to the

greatest overall increase in efficiency gain from the start to the end of evolution, followed by

medium and high V. Horizontally, we can notice that increasing R makes it earlier for

evolution to reach a stable and fixed level of efficiency gain, as soon as the 1000th process

iteration. Observing different colours of lines which represent different levels of L, we can

observe that low L tends to have the greatest efficiency gain throughout all process iterations,

followed by medium L and high L. Further, by observing various line types, we can see that

at medium and high V, increasing F tends to give greater efficiency gain through the entire

process evolution. This effect is more significant for longer sequences of actions with greater

value of L.
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Figure 9. Line Charts of Efficiency Gain from the Original Simple Happy Path over 5000 Process Iterations at Low, Medium and High Levels of

V, R, F, L

To take a closer look at the efficiency gain at the end of process evolution from the initial

simple happy path under the influence of RPA implementation, bar charts are plotted in

Figure 10, which show how the efficiency gain at the end of evolution from the initial path

differs for various combinations of V, R, F and L. Horizontally, R increases with the same

value of V. Vertically, V increases with the same value of R. The x-axis means frequency

threshold F. Colours of the bars represent different values of L and the value of L increases
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with colour intensity. The scale of all nine bar charts is standardised for the convenience of

comparison.

Observing the bar charts in Figure 10 horizontally, increasing R generally leads to higher

efficiency gain and the increase is more significant for higher frequency threshold. Increasing

retention means that there will be more influence from the historical choices or memory on

the current process evolution. Consistently repeating sequences are remembered by the

memory and the memory will stimulate RPA to take place, which enhances efficiency gain.

Observing the bar charts in Figure 10 vertically, increasing V leads to higher efficiency gain,

which contributes to the most significant effect on efficiency gain. Higher variation

introduces a higher probability of creating a new path by jumping to a further node which

substantially boosts the efficiency. Besides, under a network with high density, higher

variation will be more likely to reinforce an existing edge. Thus, higher variation will lead to

more RPA and enhance the efficiency gain through the process.

Observing every group of bars in Figure 10, increasing L generally decreases efficiency gain.

RPA is the major driving force for efficiency gain in the process evolution. When the length

of the sequence of actions for RPA is longer, it is harder to find qualified sequences to

undergo RPA, which leads to lower efficiency gain. However, one exception we could

observe here is that at a higher value of F, increasing L may lead to higher efficiency gain

when the variation is at a high level. This is an interesting observation. When the frequency

threshold is higher, which means the sequence has appeared very frequently in recent history.

Given a high variation level, which suggests that there is a higher probability of workarounds,

automating a long sequence of actions can be more effective and efficient than automating

shorter slices of actions. This can be attributed to the fact that once a very long sequence of

actions gets automated, it will significantly reduce the possibility of having shorter sequences

of actions being automated. With a high variation, the process is more likely to reach a very

efficient and shortest path quickly. This will further boost the efficacy gain from RPA.

Observing each graph across its x-axis value F in Figure 10, efficiency gain increases as F

increases at high R. Even though increasing F means the criterion for RPA is stricter and

there is less likelihood for a sequence to be automated especially when the memory span is

longer, a higher standard means that the sequences which are automated are high-quality
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candidates and once they are automated, the efficiency gain can be huge. Besides, the

increase in efficiency gain with increasing F is more significant at a high level of L. A

sequence of actions with a large length but still appearing very frequently is considered an

excellent candidate qualified for RPA. Once this sequence gets automated, the efficiency gain

can be further boosted.

Figure 10. Bar Charts of Average End-of-Evolution Efficiency Gain at Low, Medium and High Levels of V, R, F, L

To confirm that the findings from the visual inspection are statistically valid, OLS regression

with two-way interactions is run on 81000 observations of efficiency grain at the end of
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process evolution to identify statistically significant parameters and interaction terms. As

parameters are in three levels (i.e. low, medium, high), categorical variables are used in the

regression model and thus dummy coding is applied to create binary indicators for two out of

three levels of the categorical variable. The OLS regression results are specified in Table 5.

Table 5. Regression Results of the Efficiency Gain at the End of Process Evolution
OLS Regression Results

Dependent Variable Efficiency Gain at the End of Process Evolution

No. of Observations 81000

Adjusted R-squared 0.638

F-statistics 4459

Prob (F-statistics) 0.000

Variable Coefficient Standard Error P-value

Medium V 3.669*** 0.067 0.000

High V 3.673*** 0.067 0.000

Medium R -0.398*** 0.067 0.000

High R 0.160** 0.067 0.017

Medium F -0.261*** 0.067 0.000

High F -2.109*** 0.067 0.000

Medium L -2.380*** 0.067 0.000

High L -9.046*** 0.067 0.000

Medium V ⨉Medium R 0.651*** 0.062 0.000

Medium V ⨉ High R 0.202*** 0.062 0.001

Medium V ⨉Medium F 0.029 0.062 0.635

Medium V ⨉ High F 1.608*** 0.062 0.000

Medium V ⨉Medium L 0.157** 0.062 0.011

Medium V ⨉ High L 1.334*** 0.062 0.000

High V ⨉Medium R 0.832*** 0.062 0.000

High V ⨉ High R 0.355*** 0.062 0.000

High V ⨉Medium F 0.297*** 0.062 0.000

High V ⨉ High F 3.285*** 0.062 0.000

High V ⨉Medium L 0.470*** 0.062 0.000

High V ⨉ High L 2.765*** 0.062 0.000

Medium R ⨉Medium F 0.056 0.062 0.369

Medium R ⨉ High F 0.579*** 0.062 0.000

Medium R ⨉Medium L 0.026 0.062 0.675

Medium R ⨉ High L 0.555*** 0.062 0.000

High R ⨉Medium F 0.213*** 0.062 0.001

High R ⨉ High F 0.910*** 0.062 0.000

High R ⨉Medium L 0.195*** 0.062 0.002

High R⨉ High L 0.887*** 0.062 0.000

Medium F ⨉Medium L 0.106* 0.062 0.087

Medium F ⨉ High L 0.309*** 0.062 0.000

High F ⨉Medium L 0.584*** 0.062 0.000

High F ⨉ High L 3.799*** 0.062 0.000

Constant 90.469*** 0.059 0.000
Remarks: *** p <0.01, ** p <0.05, * p<0.1
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Based on the regression results in Table 5, we could notice that V at medium and high levels

as well as their interaction terms with R at medium and high levels (highlighted in green) are

all statistically significant with p-value less than 0.01 and a much greater magnitude of

coefficient. This indicates that R and V as well as their interaction terms are significant

factors which may influence the end-of-evolution magnitude of change in process. Since the

coefficients of all these terms are positive and the magnitude increases from medium to high

level of V or R, we can conclude that increasing R and increasing V can generate greater

efficiency gain by the end of routine evolution under the influence of RPA implementation.

Besides, L is also a statistically significant parameter because the p-value of L at medium and

high levels is less than 0.01 (highlighted in orange). Since the coefficient of High L is -9.046

which is lower than the coefficient of Medium L being -2.380, it validates that decreasing L is

correlated with higher efficiency gain. By observing the interaction terms between F and

High R (highlighted in red), the interaction terms all have p-value less than 0.01, which

suggests that interaction terms between F and High R are statistically significant and F and

High R altogether have a significant impact on efficiency gain at the end of routine evolution.

As the coefficient of High R ⨉ Medium F is 0.213 which is smaller than the coefficient of

High R ⨉ High F being 0.910, it is testified that at a high level of R, increasing F will

increase the end-of-evolution efficiency gain. Besides, looking into the interaction terms

between F and High L (highlighted in purple), we can observe that the coefficient of Medium

F ⨉ High L is 0.309 which is much smaller than the coefficient of High F ⨉ High L being

3.799, also that both coefficients have p-value less and 0.01 and thus being statistically

significant. We can confirm that at High L, increasing F will lead to greater efficiency gain at

the end of routine evolution.

5.2 Result Interpretation for RPA Application Strategy

Based on the analysis of simulation results as above, we could advise on how organisations

could better implement RPA to achieve higher organisational efficiency gain and meanwhile

lead the transformation of digitised processes in organisations.

The most important benefit and motivation of implementing RPA are to enhance the

efficiency gain in organisational operations via letting robots substitute manual effort to

perform repetitive processes. Based on the simulation results, we find that the length of RPA
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sequence and occurrence frequency threshold can indeed influence the extent of efficiency

gain through RPA. Automating shorter sequences can bring higher efficiency gains. Also,

automating those sequences which occur very frequently can maximise the efficiency gain

reaped from RPA. These add more valued insights when people choose and determine

suitable RPA candidates based on the criteria. Organisations could establish specific criteria

to identify those simple and short processes which occur with a high enough frequency and

only automate those routines using RPA. In addition, increasing retention and increasing

variation both give rise to greater efficiency gain. Thus, to take the efficiency gain to the next

level, organisations are recommended to provide sufficient and appropriate reference and

information to historical ways of process execution, so that process evolves by learning from

the past while generating innovative ways of getting the task done. To increase variation,

organisations could perform analysis and further simplification of the manual processes

before implementing RPA.

Implementing RPA on business processes may decrease some extent of variation present due

to fewer new edges formed in the network, which reduces the process complexity and lowers

the likelihood of process drift and phase change. However, a process with RPA deployed can

still experience a complexity burst and settle into a new dominant path. From this, we can

state that even though implementing RPA may turn some sequences in a process into

deterministic programmes, the overall business process can still drift and end up with a stable

new state. Thus, automation tools, such as RPA, still preserve some degree of process

flexibility and adaptability and maintain some potential for transformation and innovation of

digitised processes in organisations.

The magnitude of change in the network structure is the prior condition for a process to

undergo a major transformation and form a new dominant path over process evolution. Based

on the observations regarding the magnitude of change. Increasing variation can drive a

higher magnitude of change in network structure and a shorter length of RPA sequences can

lead to a greater magnitude of change in network structure. Thus, to stimulate more vigorous

process transformation or innovation, organisations should provide more opportunities for

new workarounds and process simplification by business analysts before deploying RPA.

Also, choosing those short sequences of actions for RPA can better enhance the magnitude of

change in the process structure, which creates more room for process transformation and

innovation in organisations.
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6 Conclusion

6.1 Summary

Through simulation results, we identify and highlight the dynamic effects of RPA on routine

evolution over time in terms of process complexity, the probability of phase change, the

magnitude of change in process and efficiency gain. Based on the observations and analysis,

we could generalise some theories to help organisations better implement RPA and selecting

high-quality sequences for automation to further boost organisational operation efficiency,

which may potentially give rise to transformation and innovation of digitised processes in

organisations. Summarised key findings about RPA deployment are stated in Table 6 below.

Table 6. Summary of Key Findings about RPA Implementation

Finding 1 To enhance efficiency gain, we could select shorter sequences of actions

L with a relatively higher occurrence frequency F as higher-quality

candidates for automation using RPA.

Finding 2 To further boost the efficiency increase, we may need to increase

retention R and enhance variation V by carefully performing

pre-automation analysis via further simplifying the manual processes

before implementing RPA.

Finding 3 Even though implementing RPA will reduce process flexibility and make

organisations less adaptive, we could preserve the potential of process

flexibility for transformation and digital innovation which are related to

higher drift probability and greater magnitude of change by maintaining a

higher retention R and implementing RPA on shorter sequences of

actions L.

6.2 Contributions

The model in this research paper is a good example of how to modify and extend Pentland’s

model which simulates the effects of digitalisation on processes and routines (Pentland et al.,

2020). Our model extends the original model and adopts some innovation changes which
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introduce the effects of RPA and enable RPA to interact and influence the existing effects

from the original generative model.

RPA is only one example of automation tools applied widely in organisations. The impacts on

business processes from other automation technology or adaptive systems, such as artificial

intelligence, can also be analysed using the model with some adjustments based on the nature

and characteristics of the technology.

The conclusions obtained from the results of this study can offer some insights on how to

implement RPA in a way of maximising operational efficiency while preserving the potential

for future process transformation and innovation. The practical application of this framework

and these insights can provide significant managerial benefits, particularly for automation

technology managers within organisations.

6.3 Limitations and Future Work

Due to the limitation of time and computational power, the current simulation model only

explores three values for each parameter, where each represents a categorical level, and

qualitative conclusions are drawn. To further substantiate the conclusions, the model can be

further applied to more values of parameters and more quantitative results can be generated

and concluded.

Also, there are a few assumptions stated in the model where future work can be done to

enhance the model robustness. First, in the simulation model, RPA is applied systematically,

which means at every process iteration, there is only one sequence of actions automated by

RPA. The observations may change if there are multiple candidates qualified for RPA criteria

which will be automated by RPA altogether at a single process interaction. Second, in this

study, we assume that once a sequence of actions e.g. Node 3 → Node 4 → Node 7 is

automated by RPA and there is an incoming edge to Node 3, the path from Node 3 to Node 4

and finally to Node 7 is deterministic and fixed. Thus, there is no way for having any

emerging edge from Node 4 to other nodes in the network in the future. In other words, there

will be no potential RPA starting from Node 4 to other nodes. However, it is possible in

reality to get the intermediate actions in an automated sequence involved in another RPA

sequence. Some actions can be reused as part of a new RPA sequence to form a new and
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more efficient path. The current model can be adjusted by creating a copy of the intermediate

node (e.g. Node 4) to get invoked independently later with further RPA implementation.

Third, in the current simulation model, the original simple happy path is removed after RPA

is implemented. If the simple happy path is maintained, the value of drift probability will

differ, which may make the frequency threshold and length of RPA sequence significant

factors affecting the probability of phase change. These are points worth further exploration

by modifying the model.
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