

UNDERSTANDING ONLINE INNOVATION COMMUNITY:

AN INVESTIGATION OF GROUP DIVERSITY IN OPEN

COLLABORATION

WANG ZHIYI

(B. Eng., Renmin University of China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS

NATIONAL UNIVERSITY OF SINGAPORE

2018

Supervisor:

Associate Professor Hahn Jungpil

Examiners:

Associate Professor Goh Khim Yong

Associate Professor Tan Chuan Hoo

Associate Professor Steven L. Johnson, University of Virginia

i

DECLARATION

I hereby declare that the thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

_____ ___

Wang Zhiyi

30 July 2018

ii

ACKNOWLEDGEMENTS

This thesis would not be finished without the help and support from many

individuals. Here I would like to mention some of them particularly for their advice

and influences during my journey of PhD.

First, I would like to express my gratitude to my advisor, Professor Jungpil Hahn,

who guided me to complete this thesis and develop research capabilities. In the past

five years, he devoted a significant amount of time to and provided insightful

suggestions for my research. He is a great advisor and friend in my academic life. I

learned from him not only the rigor of conducting high quality research but also the

importance of keeping my belief in the academic journey.

I would also like to appreciate the help from my thesis committee members, Professor

Khim Yong Goh, Professor Chuan Hoo Tan and Professor Steven Johnson. They

provided useful guidelines and suggestions during the development of my

dissertation, as well as valuable feedbacks on my academic career.

I am also grateful to my colleague, Dr. Lusi Yang, who always has inspirational

thoughts and determined commitment. I would like to thank her for her continuous

encouragement and unconditional support in my research development and academic

life. She is also an excellent collaborator to me with great dedication to research and

deep thinking on problems, which helped me become a better scholar.

I also benefited a lot from my friends, colleagues, and faculty members in the

Department of Information Systems and Analytics. In particular, I would like to thank

Professor Atreyi Kankanhalli, Professor Cheng Suang Heng and Professor Yuanyuan

Chen for their guidance on research methodologies and my thesis development. I also

want to thank my colleagues and faculty members in my department to give me

suggestions on academic career and provide feedbacks in research seminars.

iii

Last but not least, I want to thank my family members for their unconditional loves,

especially my parents Jianyu Wang and Mei Xie, for their everlasting encouragement,

patience and understanding. They guided me for being a nice person and cultivated

my habit of reading and thinking. I would not achieve my current status without them.

iv

SUMMARY

The emergence of online innovation communities has provided a new business model

to break the boundaries of innovation in organizations. Although these communities

have created significant values for organizations and society, effective management

of such communities is still challenging for companies and platform operators.

Specifically, it is important to explore how to facilitate value co-creation as well as

group efficiency in the open form collaboration. This dissertation seeks to examine

open collaboration management and group formation in innovation communities to

extend the literature on the effectiveness and efficiency in open innovation

communities. Drawing on the group diversity perspective, two essays are

incorporated to understand the organization of diverse individuals in online

innovation collectives.

The first essay titled “Organizing the Online Crowds: Diversified Experience and

Collective Performance in Crowdsourced New Product Development” investigates

the role of knowledge variety in crowdsourced new product development. From the

knowledge diversity and creativity perspectives, I develop a research model to

understand: 1) different types of crowd members and 2) the value contributions to

collective crowd performance from different member types. Using data from 425

crowdsourced product development campaigns, I empirically find that both diverse

knowledge and specialized knowledge are important for the collective performance of

the crowd. In addition, generalists may not be valued in the online new product

development context.

The second essay titled “Can I Touch Your Code? The Effects of Programming Style

on Open Source Collaboration” focuses on the management of individuals with

diverse work styles in open source software development. Drawing on the literature

in software engineering and group diversity, I develop hypotheses on the effects of

v

programming style on open source collaboration and development, as well as the

factors that can shape the effects of programming style. I develop comprehensive

measures to quantify programming style inconsistency at multiple levels and test

these hypotheses using empirical data and source code from a prominent open source

community. With large scaled static code analysis and econometric analysis, I find

that style inconsistency exhibits negative effects through within file inconsistency on

contribution activities rather than other collaboration outcomes. The negative effects

are mitigated by team familiarity but unexpectedly intensified by developer

experience. In addition, the enactment of coding standards to control programming

style can only reduce style inconsistency within files but style inconsistency across

files.

Overall, my dissertation takes a group diversity perspective to examine the effective

management of open innovation communities. The open collaboration process,

although can increase the reach to innovators, engenders uncertainties on creating

innovations and organizing the groups. By focusing on the diversity of knowledge

and work style in these groups, this dissertation seeks to explore the ways to better

form online groups in the open collaboration process for value co-creation and

collaboration efficiency. It provides implications on the management of open

innovation, online group dynamics and group diversity.

Keywords: innovation communities, open innovation, crowdsourcing, new product

development, open source software, open collaboration, group diversity, knowledge

variety, work style, programming style, software engineering, econometric analysis,

cluster analysis, static code analysis, propensity score matching, difference-in-

difference

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 Research Background ... 1

1.2 Research Questions.. 3

1.3 Research Implications ... 5

1.4 Dissertation Structure ... 6

CHAPTER 2 RESEARCH CONTEXT: ONLINE INNOVATION

COMMUNITIES.. 8

2.1 Characteristics of Innovation Communities ... 8

2.2 Types of Innovation Communities ... 10

2.3 Research on Innovation Communities ... 12

2.4 Research Focus of this Dissertation ... 15

CHAPTER 3 THEORETICAL BACKGROUND: GROUP

DIVERSITY ... 17

3.1 The Definition of Diversity .. 17

3.2 Two Mechanisms of Diversity... 18

3.3 Types of Diversity .. 19

3.4 Diversity in Online Groups ... 20

3.5 Theoretical Background of the Current Dissertation 22

CHAPTER 4 ESSAY I – ORGANIZING THE ONLINE CROWDS:

DIVERSIFIED EXPERIENCE AND COLLECTIVE PERFORMANCE

IN CROWDSOURCED NEW PRODUCT DEVELOPMENT 24

4.1 Abstract .. 24

4.2 Introduction ... 24

4.3 Literature Review and Theoretical Background 28

4.3.1 Crowdsourcing ... 28

4.3.2 The Role of Experience in Crowdsourcing .. 30

4.3.3 Generalist and Specialist .. 31

4.4 Theory and Hypotheses ... 33

4.4.1 Study Context ... 33

4.4.2 Experience Typology ... 35

4.4.3 Hypotheses Development ... 37

4.5 Data and Method ... 42

4.5.1 Data Collection ... 42

4.5.2 Measures .. 43

4.5.3 Identifying Experience-based Crowd Member Types 45

4.5.4 Empirical Model ... 46

vii

4.6 Results and Discussions ... 50

4.6.1 Clustering Results .. 50

4.6.2 Analysis Results ... 52

4.6.3 Supplemental Analysis ... 58

4.7 Conclusions .. 65

4.7.1 Theoretical Contributions ... 65

4.7.2 Practical Implications ... 68

4.7.3 Limitations ... 68

CHAPTER 5 ESSAY II – CAN I TOUCH YOUR CODE? THE

EFFECTS OF PROGRAMMING STYLE ON OPEN SOURCE

COLLABORATION.. 70

5.1 Abstract .. 70

5.2 Introduction ... 71

5.3 Literature Review .. 74

5.3.1 Open Source Collaboration .. 74

5.3.2 Programming Style ... 75

5.4 Hypotheses Development .. 76

5.4.1 The Effects on Contributors ... 77

5.4.2 The Effects on Development Process ... 78

5.4.3 The Effects on Project Diffusion .. 79

5.4.4 The Moderating Role of Team Familiarity .. 81

5.4.5 The Moderating Role of Developer Experience 82

5.4.6 Project Control as Antecedent of Programming Style Inconsistency 83

5.5 Research Context and Data Collection .. 84

5.6 Empirical Method .. 86

5.6.1 Measures of Programming Style .. 86

5.6.2 Econometric Specification ... 90

5.6.3 Econometric Model for Antecedents .. 93

5.7 Results ... 95

5.7.1 Stylistic Metrics and Source Code Analysis .. 95

5.7.2 Results of the Consequence Model .. 98

5.7.3 Results of the Antecedent Model ... 106

5.8 Conclusions .. 108

5.8.1 Theoretical Contributions ... 109

5.8.2 Practical Implications ... 111

5.8.3 Limitations ... 111

CHAPTER 6 CONCLUSION .. 112

6.1 Summary .. 112

viii

6.2 Contributions and Implications ... 113

6.2.1 Theoretical Contributions ... 113

6.2.2 Practical Implications ... 115

REFERENCES ... 117

ix

LIST OF TABLES

Table 4-1. A Typology of Crowd Members by Experience.. 37

Table 4-2. Robustness Checks of Clustering Solution .. 51

Table 4-3. Clustering Results and Corresponding Types ... 52

Table 4-4. Descriptive Statistics and Correlation Matrix.. 53

Table 4-5. Main Regression Results ... 57

Table 4-6. Regression Results using Interaction-based Clusters 61

Table 4-7. Predicting Product Development Success using Clusters 64

Table 5-1. Programming Style Metrics and Indicators ... 97

Table 5-2. Descriptive Statistics and Correlation Matrix.. 98

Table 5-3. Effects on New Contributor and Contributions 100

Table 5-4. Effects on Release, Attention and Code Reuse 102

Table 5-5. Interaction Effects on Contributions .. 104

Table 5-6. Interactions Effects on Project Release ... 105

Table 5-7. Matching Analysis for Short Term Effects of Coding Standard 106

Table 5-8. Difference-in-Difference Analysis for Long Term Effects of Coding

Standard.. 107

LIST OF FIGURES

Figure 5-1. A Brief Research Framework ... 77

1

CHAPTER 1 INTRODUCTION

1.1 Research Background

Innovation has become one of the most important competencies for organizations in

recent years. The creation of new products not only provides significant economic

value for organizations but also cultivates their capability for sustainable development

(Ahlstrom 2010). Organizations recognize that continued investment in innovation is

important for long-term firm survival. It is both a capitalization process of existing

knowledge as well as an exploration process for new business opportunities (March

1991). Recent trends in innovation and entrepreneurship also highlight the plentiful

opportunities and rewards for creating new solutions for the market.

However, organizations still face numerous formidable challenges with

respect to innovation and not all organizations ultimately benefit from their costly

innovation efforts (Lichtenthaler 2011). Traditional R&D activities are typically

limited to within the boundaries of an organization such that the number of experts

and the breadth of their perspectives may be constrained for substantial innovation. In

addition, firms may not fully understand what (external) consumers/users really want

if they only focus on (internal) R&D. New products may turn out not to be successful

in the market despite large amounts of investments. These challenges make pursuing

an innovation strategy uncertain and risky for organizations.

In recent years, the emergence of new web technologies and platform-based

ecosystems have enabled novel ways for creating innovations – via open innovation

communities. Open innovation communities break the traditional organizational

boundary of innovation and democratize innovation activities by empowering regular

individuals to participate in the innovation process. It affords the opportunity of

creating innovations available for anyone in the world, which benefits organizations

(West and Lakhani 2008). For example, the Linux Operating System community

consists of developers from all around the world and the system itself has been

2

continuously developed for over 20 years. It has even been adopted and is being used

by many firms for their mission critical business activities. Meanwhile, organizations

have also built such communities (i.e., firm-sponsored open innovation communities)

to extract value from users outside of the organizational boundary (Lettl et al. 2006).

For instance, Dell created IdeaStorm in 2007 to collect useful solutions from regular

users to better satisfy its customers and the market. The “wisdom of crowds” has been

significantly exploited by these Internet-based innovation communities (Surowiecki

2004).

Given the great potential for economic value creation from open innovation

communities, researchers and practitioners alike have exerted significant efforts to

understand how these communities operate and have experimented with new

community models (Chesbrough and Appleyard 2007; Di Gangi et al. 2010;

Nambisan and Baron 2010). Nevertheless, the effective management of these

communities and the overall ecosystem is still challenging for platform stakeholders.

Different incentives may induce unintended strategic behaviors, uneven quality of

crowd contributions, which ultimately may lead to inefficient management of the

innovation process. This is because innovation communities usually operate in an

open form collaboration model, where participation barriers are low and control

mechanisms are weak (Ren et al. 2015). Under such conditions, individual

contributors could freely choose what to contribute and how they contribute, which

may lead to undesired outcomes for both innovation effectiveness and coordination

efficiency. Such individuals with different knowledge, although enrich the available

ideas and perspectives in the group, can lead to diverse group composition, making

the creation of innovations uncertain. Thus, it is important to understand how to

effectively manage the innovation activities and diverse individuals in these

communities.

My dissertation seeks to better understand open collaboration in innovation

communities. It consists of two essays focusing on crowdsourced new product

3

development communities and open source software communities, respectively. In

these communities, individuals with diverse backgrounds can voluntarily participate

in innovation activities. To explore effective open collaboration management, I draw

on the group diversity perspective to understand how diverse individuals can be

formed into open collaboration groups to create value for innovation and advance

collaboration efficiency (Harrison et al. 1998; van Knippenberg and Schippers 2007;

Williams and O’Reilly 1998). I also attempt to examine group diversity by

differentiating the role of subgroup members and exploring work style preference

diversity based on the nature of the product. Specifically, the first essay examines

knowledge variety in large online groups in crowdsourced new product development.

It aims to understand the open collaboration process among individuals with diverse

knowledge and how different member groups in the crowd provide value

contributions for product development. The second essay focuses on open

collaboration in open source software development communities, where strict control

on an individual’s work style preference is the exception rather than the norm. It

draws upon the notion of “diversity as separation” and studies the role of

programming style in open source collaboration. It intends to explore a specific type

of diversity – diversity in work style preferences, which is typically not observed in

traditional contexts or examined from studies following the behavioral perspective, to

extend the current literature on group diversity.

1.2 Research Questions

Online innovation communities are characterized by open collaboration, diverse

individuals and innovation-based tasks (Bogers et al. 2010). In crowdsourcing-based

innovation communities, participants can accumulate their experiences in different

tasks and develop their own knowledge portfolios (Huang et al. 2012). Thus,

individuals in a large online group for new product development can be characterized

by their experiences. How individuals with different experiences across knowledge

4

domains are brought together may influence the overall innovation performance of

the crowd. Therefore, the first research question of this dissertation is:

How do knowledge distributions of crowd members impact the collective

innovation performance of crowds?

Having diverse individuals not only provides a variety of perspectives, but

also characterize online groups with different member compositions. A group with all

members having similar knowledge portfolios may not perform well in open

collaboration (Harrison and Klein 2007). Thus, differences in group composition may

also impact performance. Meanwhile, one group of members may strengthen or

weaken the effect of another group of members. This highlights the importance of the

composition of crowd members in open collaboration. Hence, the second research

question is:

How does the composition of crowd members affect collective crowd

performance?

In online innovation communities, the open collaboration process typically

lacks strict control mechanisms compared with in-house closed-form collaboration.

Thus, diversity of work style preferences will be amplified in open collaboration

communities, especially when the work style is embedded in the product itself. In

open source innovation communities, programming style is such an example. It is

usually strictly controlled in proprietary software development using coding standards

but such controls are not common in open source development and individuals resort

to using their own work (programming) styles. This kind of individual preference

may lower effectiveness and efficiency in collaboration and development. Therefore,

the third research question in my dissertation asks:

How does work style preference in open source development affect open

source collaboration?

In addition to the direct impact of programming style on open source

collaboration, it is important to be aware of the possible solutions to alleviate the

5

issues arising from different programming styles. Given the potential negative effects

of separation on group performance and the extra efforts to comprehend source code

with inconsistent programming styles, the factors (i.e., group formation mechanisms)

that can moderate the negative consequences and mitigate the issues arising from

coding style differences are important for managing different individual styles in

open innovation communities. Thus, the last research question is:

What factors may resolve the issues arising from programming style diversity

in open source collaboration?

In summary, these research questions examine open collaboration in

innovation communities from a group diversity perspective. To resolve the challenges

on the uncertainty of what are contributed and how contributions are made in open

innovation community due to diverse individual participation, I focus on two aspects

of diversity – knowledge diversity for the “what” aspect (quality) and work style

diversity for the “how” aspect (coordination). Therefore, the first two research

questions pay attention to knowledge variety in large scale online collaboration

groups. The knowledge of individual participants could affect what kind of

contributions are made in innovation communities, which help to resolve the

challenge of contribution quality. The other two research questions examine the work

style diversity in open source collaboration. Individual style of participation

influences how the contributions look like and has important implications for the

challenge of coordination. Overall, answering these questions help us to further

understand the broader phenomena in open innovation communities and ecosystems.

1.3 Research Implications

My dissertation offers several implications for research and practice. First, the two

essays extend the literature on online innovation communities by providing insights

into the nature of open collaboration in crowd-based innovation activities. They

examine the research context with open collaboration elements for creating

6

innovative products but with different organizing mechanisms. The research models

have the potential to enrich our knowledge of the management of innovation

communities. Second, the research design and empirical method in my dissertation

capture the dynamics of group formation in innovation communities. Given the low

barriers of entry and exit and the nature of voluntary contribution in open

collaboration, the fluidity and dynamics of online groups are important characteristics

to be considered in designing research models and conducting empirical analysis

(Ransbotham and Kane 2011; Ren et al. 2015). This dissertation, therefore, extends

the literature by generating research implications for understanding the dynamic

nature of open collaboration collectives. Third, this dissertation extends the

boundaries of the group diversity literature by examining knowledge variety in large

scale online groups and work style diversity in open collaboration. It seeks to

understand the role of diversity in more complicated contexts and in the nature of the

product.

For practical implications, this dissertation offers insights into group

formation in online innovation communities. Firms and teams can learn from the

research findings to build effective online work groups for product innovations and

efficiently organize diverse individuals for innovation. Knowledge variety, work

style, team familiarity and member experience can be used as important

characteristics for group formation and governance in innovation communities.

1.4 Dissertation Structure

My dissertation examines open collaboration in innovation communities from group

diversity perspective. It includes two independent essays that study knowledge

diversity in a crowdsourced new product development community and work style

diversity in an open source software community, respectively. The current chapter

provides the research background, presents the research questions and outlines the

high-level contributions. Chapter 2 introduces the research context – online

7

innovation communities. I review and summarize and discuss the key characteristics,

common types of organizing, and the existing research streams related to innovation

communities. Chapter 3 presents the theoretical background on group diversity,

including the definition and mechanisms of groups diversity, a theoretical typology of

diversity, and a discussion of diversity in online groups. Chapters 4 and 5 are the two

independent essays. As standalone essays, each chapter includes a focused literature

review, theory and hypotheses development, a discussion of the specific study

context, the empirical method and results, followed by discussions and a conclusion.

Specifically, chapter 4 is the first essay about knowledge variety in crowdsourced

new product development. It includes the literature review on crowdsourcing and

generalist vs. specialist framework, a typology of crowd members, hypotheses

development on value contributions of crowd members, study context, empirical

method, results and discussions, and conclusions. Chapter 5 is the second essay about

work style diversity in open source software community. It presents the literature

review on open source community and programming style in software engineering,

research hypotheses on the main effects of programming styles and factors that shape

the effects, research context, empirical methods including the measure of

programming style and econometric models, results and conclusions. Finally, I

conclude my dissertation in Chapter 6 with a summary of the essays and discussion of

contributions.

8

CHAPTER 2 RESEARCH CONTEXT: ONLINE INNOVATION

COMMUNITIES

An online innovation community (or simply, innovation community) is a form of

online community whose purpose is to create innovations. An innovation community

can be defined as “a voluntary association of actors who lack a common

organizational affiliation but share the common instrumental goal to create

innovations” (Gläser 2001; West and Lakhani 2008, pp. 224). In such communities,

innovative users from anywhere in the world are able to contribute their talents to

various innovations, such as new products for organizations (Bayus 2013; Di Gangi

and Wasko 2009), extensions or modifications to existing products (Arakji and Lang

2007; Zhang et al. 2013), and even original products that can be consumed by others

(Feller et al. 2008). These communities have created great economic value for

companies and the public since its emergence and researchers in Information Systems

have devoted significant efforts to better understand how these communities function

and create value. In this chapter, I summarize the key characteristics of innovation

communities and review the important extant research streams. Finally, I discuss the

focus of this dissertation in terms of the research context and how the two essays in

this dissertation attempt to add to the literature.

2.1 Characteristics of Innovation Communities

The definition of online innovation community suggests that such communities

follow the nature of online communities and the purpose of these communities are for

creating innovations (usually open innovation) (West and Lakhani 2008). Up to now,

several salient characteristics of online innovation communities have been observed,

practiced and documented by both researchers and practitioners. These characteristics

not only exhibit the uniqueness of innovation communities, but also suggest

important research directions in examining this phenomenon.

9

IT-mediated and Geographically Distributed. Online innovation communities

typically operate on the Internet such that users participating in the communities may

come from anywhere in the world (Gläser 2001). On the one hand, this makes

innovations more accessible by gathering innovators from distant places. Innovative

users have more opportunities to contribute or collaborate through the Internet and

which can consequently increase the likelihood that a greater number of innovations

may be created. On the other hand, geographical separation and cultural difference

can also present challenges to effective communication, collaboration and evaluation

of innovation (Daniel et al. 2013). Time zone differences, diverse culture

backgrounds (e.g., different spoken languages) and a lack of face-to-face interaction

may undermine the effectiveness of such communities (Kankanhalli et al. 2006).

The Wisdom of Crowds. It has been realized that the promise of innovation

communities is largely characterized by the “wisdom of the crowd” (Boudreau and

Lakhani 2013). Users who may not be experts are able to view problems from novel

perspectives so that the crowd can create tremendous value for organizations or

society (Mannes 2009). Many practices have tried to utilize the wisdom from the

crowd to solve a variety of problems and innovation communities provide ideal

Internet-based platforms to sustain such practices. In summary, the diversity of

knowledge from a heterogeneous crowd can help to generate novel ideas for creating

innovations.

Voluntary Participation. Similar to other online communities, innovation

communities are also characterized by voluntary participation of members (Bagozzi

and Dholakia 2006). Users or members in these communities are not forced to work

and they can freely choose what and when to contribute. Although this is common in

other online communities (e.g., knowledge sharing communities such as Quora), it is

different with innovation tasks in online labor markets (which is contract-based) or in

offline innovation contexts. The combination of innovation activity and voluntary

participation gives users the freedom to explore and devote their knowledge, but also

10

raises concerns related to task regulation and member commitment (Crowston et al.

2007).

Knowledge Intensive Work. Different from general online communities (e.g.,

discussion forums, Q&A communities and healthcare communities), innovation

communities are typically characterized by knowledge-intensive tasks that are for

creating innovations (Chesbrough and Appleyard 2007). Users in these communities

not only share their knowledge, but also use their knowledge to generate new ideas.

The context of innovation usually requires community members to create new things

that may have value for organizations or the public.

2.2 Types of Innovation Communities

In addition to the aforementioned common characteristics, online innovation

communities can be heterogeneous in terms of their mechanisms of operation. In

general, how the community members are organized for innovation creation can be

categorized into three ways: firmed-oriented, two-sided and self-organized.

Firm-oriented Communities. This type of innovation community is usually built and

led by a firm for its own innovation initiatives. These communities are commonly

called “user innovation communities” (Bogers et al. 2010; Füller et al. 2006). Firms

create communities to organize for innovations beyond their boundaries. The

outcomes of community innovation (e.g., ideas, solutions and products) are usually

utilized by the firm for their own business (Di Gangi and Wasko 2009). In such

communities, participation is not limited to community members and firms also

communicate with users in the community and organize them for innovations (Greer

and Lei 2012). For example, in Dell’s IdeaStorm community, users can contribute

their new product ideas and Dell will select ideas that are proposed by the community

and also in line with Dell’s own business strategy (Di Gangi et al. 2010; Huang et al.

2014). By operating such communities, firms are able to gather a group of individuals

outside of their boundaries but with diverse perspectives to facilitate their new

11

product and service innovations. These community members not only serve as

innovators to contribute ideas but also as product users who understand market

requirements (Bogers et al. 2010; Lettl et al. 2006). The major challenge in these

communities is how to select ideas from community members. Contributors in these

communities may have strong expectations of being selected or rewarded, and

sometimes the crowd evaluation of ideas is quite different from expert panel

evaluation in the firm (Liu et al. 2018). It is important for the firm to balance the

participants’ motivation and the selection of ideas for implementation.

Two-sided Communities. This type of online innovation community is operated by

third-party platform owners with two group of users – innovation seekers and

innovation contributors. Seekers in the community post innovation tasks and

contributors are tasked to provide solutions (Yang et al. 2009). Some crowdsourcing

communities, such as TopCoder, adopt this type of community model where

programming challenges are posted by innovation seekers and solved by contributors.

Different from the first type (i.e., firm-oriented communities), innovation seekers in

two-sided communities do not have to be firms but can be individuals who seek new

solutions for their personal use. Moreover, the innovation task is the glue that

connects seekers with contributors (Estelles-Arolas and Gonzalez-Ladron-de-Guevara

2012). Innovation activities in these communities are mostly task-based and

innovative users only submit their ideas or solutions to specific tasks. The major

challenge in this type of community is about the choice of task and strategic

behaviors under such a competitive environment. Users face the trade-off between

performing diverse tasks to acquire new experiences and the probability of winning

the reward. Strategic users may choose the timing of participation and difficulty of

the task to increase the chance of winning, which in turn may harm the community in

the long run (Huang et al. 2014; Yang et al. 2010). Therefore, it is necessary to

understand how to motivate users to perform more tasks and reduce the strategic

behaviors.

12

Self-organized Communities. In the previous two types, innovative users in the

communities are organized by specific parties, i.e., the firms or the seekers. However,

innovation communities can also self-organize to create innovations – these constitute

the third type – self-organized communities. Users in such communities start

innovation activities by themselves. The most exemplary case of self-organized

communities is the open source software development community, where developers

work together to make innovative software. In the Linux OS community, the

development of the system is not for any firm or individuals but is to create a novel

and useful operating systems (Bagozzi and Dholakia 2006; Lee and Cole 2003). In

such communities, users can freely create their innovations and the innovation

outcomes can be consumed by a broader group, such as the public or those with

interests (von Hippel 2005). The key challenge in the self-organized community is

how to effectively form the community and organize the members, as there is no

explicit party to control the innovation activities. Community members are expected

to build their own logics on the collaboration, communication and governance

(Bagozzi and Dholakia 2006).

2.3 Research on Innovation Communities

Given the key characteristics and various types of online innovation communities,

researchers have put in significant efforts to understand the phenomenon of online

innovation communities. Besides the research challenges in each type of innovation

communities, there are several streams of research examining different behavior and

community mechanisms across these community types. Specifically, existing research

on innovation communities mainly focus on the following aspects: individual’s

motivation to contribute, antecedents of contribution behaviors, effective team

management and collaboration, and the effective design of innovation communities.

Individual Motivation. An important stream of research in online communities and

innovation communities is to understand why people contribute to these communities

13

when oftentimes there are no direct monetary rewards. The existing literature in

innovation communities has suggested different types of motivations – intrinsic

motivation, extrinsic motivation and internalized extrinsic motivation (Roberts et al.

2006; von Krogh et al. 2012). Intrinsic motivation is usually about the enjoyment of

participating in the communities, which has been shown as an important factor on

developer’s participation in open source communities (Ke and Zhang 2009; Zhang et

al. 2013) and crowdsourcing communities (Zheng et al. 2011). Extrinsic motivation is

about the monetary rewards and career benefits from contributions, and is usually

regarded as the dominating motivation when economic incentive is provided (Hann et

al. 2013; Roberts et al. 2006; Yang et al. 2010). In addition, related studies have

shown that internalized extrinsic motivations, which benefit individuals in non-

monetary ways, have strong implications on user’s participation. It has been

examined that garnering reputation or identity (Fang and Neufeld 2009; Roberts et al.

2006; Zheng et al. 2011) and learning new knowledge (Fang and Neufeld 2009; Hars

and Ou 2002; Lakhani and Von Hippel 2003) are important motivations for

participating in different types of innovation communities.

Contribution Behavior. Another stream of research in innovation communities

examines the factors beyond motivation that affect a user’s contribution and the

quality of their contributions. Two major aspects have been widely discussed in

related works: the social network and experience. A contributor’s social network has

been documented as an important antecedent of participation and contribution (Hahn

et al. 2008; Moqri et al. 2015; Oh and Jeon 2007). Through social influences and

social connections, individuals will make more contributions and improve the quality

of their works. Moreover, an individual’s experience can have salient impacts on

his/her contributions. Learning-by-doing has been broadly investigated in research on

crowdsourcing communities (Archak and Ghose 2010; Huang et al. 2012) and open

source software development (Singh et al. 2010). However, some unexpected effects

of experience in the innovation context are also present, such as cognitive fixation

14

(i.e., successful experiences constrain the creativity of subsequent contributions)

(Bayus 2013) and strategic behaviors (i.e., contributors tend to maximize their

probability of winning contests so that they strategically participate in crowdsourcing

to get higher chances of being rewarded) (Huang et al. 2014; Yang et al. 2008).

Team Collaboration. In addition to individual behaviors in innovation communities,

researchers in this area also focus on group level phenomena, especially team

collaboration in such communities. The majority of research focuses on this aspect in

self-organized communities. Existing studies on open source communities have

examined various dimensions of open source team collaboration including social

capital (Singh et al. 2011), network embeddedness (Grewal et al. 2006), governance

and coordination (Blincoe and Damian 2015; Shah 2006), team ideology (Stewart and

Gosain 2006), and team diversity (Daniel et al. 2013). In addition, studies in

crowdsourcing and open innovation communities (i.e., the first two types of

innovation communities discussed above) have started to explore the factors and

mechanisms of collaboration process in these communities (Boudreau et al. 2014;

Dissanayake et al. 2014; Levine and Prietula 2013). The new business models that

focus on collaborative design in crowd-based communities have created opportunities

for researchers to investigate some important aspects such as the collective design

(Paulini et al. 2013), collaboration engineering (Nguyen et al. 2013) and co-

development success (Oh et al. 2015).

Community Mechanism. In addition to user behaviors and collaboration, there is a

stream of literature that focuses on how the design of innovation communities create

better innovations at the macro level. Existing studies usually adopt theoretical

development and case-based approach to develop frameworks or practices for

effective innovation communities and conceptualize the mechanisms of crowd-based

innovation communities (Chesbrough and Appleyard 2007; Piller and Walcher 2006).

Important topics in this stream include strategies to incorporate users for innovation

in a community (Fichter 2009; Füller et al. 2008; Lakhani and Von Hippel 2003; von

15

Hippel and von Krogh 2003), theoretical frameworks to effectively utilize the crowd

in new product development (Di Gangi et al. 2010; Füller et al. 2006), and

community mechanisms for innovators (Di Gangi and Wasko 2009; Franke and Shah

2003). This stream of research has provided important implications for both the

creation of innovation community ecosystems and the practices to incorporate the

crowd into the innovation process (Boudreau and Lakhani 2013).

2.4 Research Focus of this Dissertation

This dissertation aims to understand the open collaboration process in the online

innovation process. Although existing research in innovation communities have

widely examined the team collaboration perspective, there are still several gaps in

related literature. First, most studies focus on collaboration in self-organized

communities such as the open source software development community. In the

context of firm-led open innovation communities, there is limited understandings on

how firms organize the users into an open collaboration process. Although previous

examinations widely discuss crowdsourcing-based communities, their focus is usually

on the competition-based mode or idea generation process, instead of the

collaboration mode. Second, existing studies on collaboration in innovation

communities usually examine the behavioral factors such as social networks or team

attributes, while ignoring the importance of the nature of the product itself in the

innovation process. The focus of behavioral perspective helps to understand the

overall management of open collaboration, but fails to explain more nuanced

phenomena rooted in the product development process (e.g., software engineering in

open source software development) and deeper level team collaboration. Therefore,

my dissertation intends to fill these gaps by conducting two empirical studies to

extend the current literature on innovation communities as follows.

The first essay studies a firm-oriented open innovation community to fill the

first gap. Specifically, it focuses on how firms use the crowdsourcing approach to

16

incorporate the community into the new product development process. It emphasizes

the collaboration perspective in crowdsourcing to complement our current

understanding that centers on competition and idea collection. Using data on

crowdsourced new product development campaigns that involve diverse crowd

members, this study attempts to explore how to effectively organize online crowds in

the innovation process. The second essay examines self-organized communities, i.e.,

open source communities, to fill the second research gap. It seeks to identify the key

metrics in the software source code and examine how different programming styles in

an open source project affect the open collaboration process. By studying the role of

programming style, I intend to explore deep level collaboration mechanisms on the

product itself and discover nuanced insights in the open source ecosystem. Using

data and source code from open source projects, the second study explores the

challenges in open collaboration and how to resolve these issues. Overall, the two

essays help to enrich our understanding of online innovation communities by

highlighting effective mechanisms for open collaboration.

17

CHAPTER 3 THEORETICAL BACKGROUND: GROUP

DIVERSITY

In this dissertation, the theoretical perspective to understand open collaboration

process in online innovation communities is group diversity. There has been a long

history of research trying to understand the effects and dynamics of group diversity in

the organization and strategy literature (van Knippenberg and Schippers 2007). The

extant literature has discussed the effects of group diversity on group performance

and the theoretical mechanisms underlying these effects. In this chapter, I summarize

the classical views on group diversity in the literature and discuss its relevance to

online innovation communities and the current dissertation.

3.1 The Definition of Diversity

Diversity in work groups is usually defined as the differences among the group

members in terms of specific attributes that will lead to a perception that others are

different from the self (van Knippenberg et al. 2004). The attributes that lead to

diversity can range from demographic attributes such as age, gender and culture

background (Bayazit and Mannix 2003) to informational attributes such as education,

tenure and functional positions (van der Vegt and Bunderson 2005). In addition to

surface-level attributes, deeper-level attributes such as attitudes, beliefs and values

(Harrison et al. 1998) can also lead to diversity. It has been well recognized that

group diversity can affect performance, but this is dependent on whether the

difference in an attribute is visible to the group members and whether the difference

can shape the perspectives needed to perform the group task (Pelled 1996). However,

studies which examine the effects of diversity on performance have not drawn

conclusive implications (van Knippenberg and Schippers 2007). In general, diversity

in work groups may lead to conflicts but mixed findings were observed regarding the

effects of diversity on group task performance.

18

3.2 Two Mechanisms of Diversity

Although there were mixed observations and findings on the effects of group

diversity, two core mechanisms have been agreed upon in the literature – social

categorization and information/decision-making (van Knippenberg and Schippers

2007; Williams and O’Reilly 1998). The interaction of these two mechanisms helps

to understand and interpret the mixed effects of group diversity.

Social Categorization. It is commonly acknowledged that individual differences in

work groups can lead to social categorization, where members are more likely to

interact with similar others and have biases against dissimilar others (Williams and

O’Reilly 1998). Such differences can undermine the group functioning process and

lead to subgroup dynamics. From this perspective, work groups with homogeneous

individuals will perform better than those with heterogeneous members since

individuals with different social demographic attributes will try to categorize

themselves into different subgroups in order to be more satisfied or comfortable

during the group works (Pelled et al. 1999). Conflicts are more likely to be generated

across different social groups when subgroup dynamics are constructed, leading to

worsened group performance. In general, social or demographic differences such as

age, gender, culture, tenure and position are regarded to engender this mechanism.

Information/Decision-Making. The core of this mechanism is that group diversity

can be associated with differences in terms of expertise, knowledge and perspectives

(van Knippenberg and Schippers 2007). From the informational or decision-making

perspective, heterogeneous groups can access and bring to bear broader knowledge,

opinions and expertise so that these groups are able to make decisions from more

diverse perspectives and potentially produce better outcomes than groups with

homogeneous members. Groups with diverse informational perspectives are more

likely to exchange information, acquire various knowledge and make greater use of

the information (Dahlin et al. 2005). In this process, task-related attributes such as

19

knowledge background, individual skills and personal network connections are the

focal ones that engender this mechanism (Horwitz and Horwitz 2007).

3.3 Types of Diversity

In addition to the mechanisms on explaining the role of diversity, researchers have

proposed typologies to understand what diversity is about and decompose different

dimensions of diversity. According to the pattern, operationalization and

consequences of diversity, it can be categorized into three types: separation, variety

and disparity (Harrison and Klein 2007).

Diversity as Separation. Separation is about the differences of values, beliefs and

attitudes in a group (Williams and O’Reilly 1998). It captures individual differences

on a continuous attribute where individuals collocate at different positions across the

attribute (Harrison and Klein 2007). Separation happens when group members have

different opinions or attitudes towards the tasks (no separation when everyone has the

same attitude, i.e., all at the same position with respect to attribute), and maximum

separation emerges when one half of the group members have a completely opposite

attitude from the other half (Harrison and Klein 2007). In terms of its consequences,

following the attraction-selection-attribution mechanism (Schneider 1987; Schneider

et al. 1995), separation usually leads to low levels of group cohesion, high likelihood

of member withdrawal, greater conflicts and poorer performance (Ely 2004; Harrison

et al. 1998; Jackson and Joshi 2004). Similar to the social categorization mechanism,

individuals find it more pleasurable to work with others with similar values or

characteristics in the same group (Harrison et al. 2002).

Diversity as Variety. Variety is about the knowledge, skills and information across a

set of categories (McGrath et al. 1995). It captures the difference between individuals

on a categorical attribute. Variety exists when members in the group have diverse

information or knowledge in performing a task. It is minimal when all the individuals

belong to the same category, while it is maximal when each individual occupies a

20

unique category (Harrison and Klein 2007). Generally, this type of diversity is

positively associated with group performance. Variety helps the group to access

different knowledge and resources, and facilitates the decision making and task

completion within the group (Jackson and Joshi 2004; van Knippenberg et al. 2004).

Consistent with the information processing mechanism, greater variety of information

in the group can lead to better decisions and more creative solutions (Jackson et al.

1995).

Diversity as Disparity. Disparity relates to the resources, power and status distributed

within the group (Blau 1977). It captures the inequality of individuals in terms of the

resources they possess in the group. Disparity emerges when some individuals in the

group hold more resources or power compared to others. Different from separation

and variety, disparity is asymmetric because it only happens when some individuals

have more power than others instead of the opposite. It is minimal when all members

share the same amount of resources, while it is maximal when only one individual has

a disproportionate share of the power or the resource (Harrison and Klein 2007).

Following the tournament competition mechanisms, disparity can induce competition,

differentiation and deviations within the group (Siegel and Hambrick 2005). But from

the social stratification perspective that addresses power and status hierarchies, a

moderate level of disparity (where individuals in the group exhibit some but limited

differences in terms of power or resources) can lead to better conformance to group

norms (Phillips and Zuckerman 2001).

3.4 Diversity in Online Groups

More pertinent to the focus of this dissertation, diversity in online groups has also

been examined in the existing literature (Daniel et al. 2013; Ren et al. 2015).

Different from traditional offline work groups, online groups have several unique

characteristics that can lead to different implications with regards to the effects of

diversity (Carte and Chidambaram 2004; Ren et al. 2015).

21

First, there is a lack of face-to-face interaction in online groups since

members are geographically dispersed and interact primarily through technology-

enabled channels. In such contexts, on the one hand, visibility of attributes is usually

not salient so that diversity is less likely to be observed by group members.

Individuals may not readily be aware of others’ background and differences. On the

other hand, these Internet platforms also enable users to access others’ information

such as demographics and participation history. This leads to unclear effects with

respect to the social categorization process (Pelled 1996; Pelled et al. 1999).

Second, the structure of online groups is quite different from that of offline

work groups. Power and status in online groups usually follow the logic of

meritocracy rather than that of hierarchy (Stewart 2005). An individual gains power

or social status in an online group through contribution, recognition and reputation

instead of predetermined role from hierarchical position (Ren et al. 2015). Thus,

inequality from some resources or privileges is not likely to emerge in online groups,

which can curtail the negative effects of disparity on group functioning.

Third, in online groups, collaborative technologies are commonly used to

coordinate members and generate rich information to be shared. These IT-enabled

systems in online groups can help members track diverse information they have

obtained and contributed (Carte and Chidambaram 2004; Chiravuri et al. 2011).

Online groups are more likely to search and utilize various knowledge and expertise

compared with offline work groups. Thus, it is expected that the information

processing mechanism will play a more prominent role in online groups.

Lastly, online groups are characterized by fluid membership, low entry/exit

barriers and voluntary participation (Faraj et al. 2011). Any individual with an

intention to contribute can join a group, which further leads to much greater diversity

of information in the group. However, the low entry/exit barrier and voluntary

participation make online groups more sensitive to conflicts (Cramton 2001). Group

22

members may stop their participation when different opinions or conflicts arise in the

collaboration process.

3.5 Theoretical Background of the Current Dissertation

My dissertation uses group diversity as the theoretical lens to understand the open

collaboration process in online innovation communities. Specifically, it focuses on

diversity as variety and as separation in online innovative collectives. The first essay

aims to explore the effects of knowledge variety in large online collaboration groups.

Although research on diversity has examined the effect of diversity or variety in

different contexts, these groups are usually team-based and of small size. However,

firms that collaborate with the crowd using innovation communities need to organize

a large number of participants, implying the importance of understanding the overall

effects of diversity (variety) in large online groups. These large online groups,

characterized by diverse participants with diverse expertise, difficulties in quality

control and information exchange, as well as multiple incentives of the crowd

members, make the management of diverse individuals more challenging. In addition,

I attempt to differentiate the role of different subgroup members in the collaboration

process. Existing studies on group diversity usually examine the impact of overall

group diversity (using some group level diversity indices) on group performance

instead of exploring the composition of different types of members. The second essay

focuses on individual work style separation as diversity. In general work groups,

individuals can complete their tasks on their own such that the work style is merely a

personal characteristic not visible to others (Pelled 1996). However, when this

attribute can be observed by others, its effects on collaboration and performance are

not well understood. Open source software communities, where work style can be

observed from the source code, provides an opportunity to investigate this diversity

attribute and allows us to explore the approaches to alleviate separation when

individuals exhibit their work styles in the group. Overall, this dissertation seeks to

23

examine two important types of diversity in innovation communities and develops its

theoretical framework based on the group diversity literature (Harrison and Klein

2007; van Knippenberg and Schippers 2007; Williams and O’Reilly 1998). It aims to

extend the literature on the attributes and effects of group diversity, especially in the

context of online groups.

24

CHAPTER 4 ESSAY I – ORGANIZING THE ONLINE CROWDS:

DIVERSIFIED EXPERIENCE AND COLLECTIVE PERFORMANCE

IN CROWDSOURCED NEW PRODUCT DEVELOPMENT

4.1 Abstract

Crowdsourcing has widely been used as a strategy for sourcing ideas and efforts to

facilitate innovation. However, research into the value creation mechanism of

crowdsourcing and the efficacy of the crowd in innovation creation is still limited. In

this study, we investigate a crowdsourced new product development context to

understand the collective intelligence and the crowd-creation process. Drawing on the

theory of diversity and professionals’ experience portfolios (i.e., generalists vs.

specialists), we examine the role of crowd participants with different experience

distributions in affecting crowd performance and innovation outcomes. Our empirical

analysis shows that participants with both diverse and specialized experience are

helpful in enhancing crowd performance in terms of efficient product development.

The results also show that participants with T-shaped experience in non-focal tasks

may be beneficial. Contrary to other group contexts, generalists do not seem to be

helpful, at least in our study context. The findings provide insights for understanding

this new form of organizing using crowdsourcing with collaboration and value co-

creation in open innovation communities.

4.2 Introduction

Creating innovations is no longer the sole purview of domain experts but has recently

become accessible to ordinary contributors in the crowd. The wisdom of crowds, or

collective intelligence, has been appropriated by multiple stakeholders including

firms, governments, scientists, technical experts as well as researchers (Howe 2006;

Howe 2008; Malone et al. 2010; Savage 2012). Numerous crowd-based platforms

have been established to facilitate innovations and the creation of economic value

25

(Avital et al. 2014). Crowdsourcing, a term coined by Jeff Howe in 2006 (Howe

2006), has been widely used for seeking various information and knowledge in a

variety of domains. Platforms such as IdeaStorm, TopCoder and InnoCentive have

attracted numerous users who are not formal domain experts but nonetheless

contribute important resources (e.g., ideas, knowledge or solutions) to problem-

solving and innovation creation. Leading companies including Dell, Starbucks, SAP,

GE and Apple have also built crowdsourcing platforms and communities to attract

value creation from the crowd (Krcmar et al. 2009; Ramaswamy and Gouillart 2010).

Along with the popularity of crowdsourcing and crowd-based platforms, a

variety of business models concerning the way of organizing for crowdsourcing have

been developed by companies and studied by scholars. Traditional crowdsourcing

typically takes the form of a one-time collection of ideas, while Web 2.0 technologies

and social media introduced social platforms and communities for crowdsourcing. To

organize crowd participants, many crowdsourcing platforms adopt a competition

model (e.g., crowdsourcing contest) and participants compete against one another to

win the contests (Terwiesch and Xu 2008). Another form of organizing for

crowdsourcing is firm-oriented idea generation, a model whereby a company hosts a

platform and community members contribute new ideas to the company’s business

and services. IdeaStorm, the well-known platform hosted by Dell, is a representative

example of this model (Bayus 2013).

Although competition and idea generation have been regarded as dominant

forms of crowdsourcing, novel ways of organizing have recently been introduced.

One of the new emergent organizing approaches in the crowdsourcing business

model, which is the focus of this study, is collaboration. In contrast to the competition

model where participants do not interact with one another, this new form of

organizing emphasizes the notion of “crowd co-creation” and introduces

interdependencies in crowdsourcing projects (Avital et al. 2014; Malone et al. 2010).

A typical example of such a crowd co-creation process is the LEGO Ideas

26

Community, which enables user collaboration for value co-creation (Antorini et al.

2012). The penetration of social media, online communities and digital

communication enables such collaboration-based crowdsourcing to be practically

feasible. Compared to traditional crowdsourcing of work using contests and ideation

forums, the concept of value co-creation is more salient in the collaboration process,

which could lead to more predictable value propositions from the crowd and

innovation creation from larger-scaled crowds (Nguyen et al. 2013; Nickerson et al.

2014). Such a new approach of organizing crowdsourcing and innovation has altered

how crowds work and how value is created in open innovation communities. Instead

of only seeking ideas, this new form of crowd-creation (Geiger et al. 2011) highlights

the depth of crowd work and the importance of creating tangible outcomes from

ideas. However, despite the growing trend of collaboration and value co-creation in

crowdsourcing, research has yet to thoroughly investigate them, and challenges

remain in this new form of organizing. Innovation outcomes may be subject to the

uncertainty of contributions from diverse participants organized in the co-creation and

from the voluntary nature of participation from the community (Ren et al. 2015). The

existing literature has primarily focused on contest-based competitions and idea

generation processes in crowdsourcing; only limited attention has been paid to new

forms of innovation in crowdsourcing communities (Dissanayake et al. 2014),

especially the organizing with collaborative intelligence and the challenges in the

crowd co-creation process.

In this study, we fill the literature gap and resolve the challenges in crowd-

creation by investigating collective intelligence and innovation outcomes in

crowdsourced new product development (Malone et al. 2010). Concerning how the

crowd works and creates value, an important aspect is to organize the knowledge

contributed and created by the participants (Faraj et al. 2011). Participants possess

different sets of knowledge in crowd-creation and make contributions based on their

knowledge. To understand how to organize participants with different types of

27

knowledge, we adopt the theoretical lens from the organizational literature on

diversity to explain differences in outcomes derived by the crowd in new product

development. Specifically, by considering prior contributions or experiences of

participants in the community as a proxy of knowledge (Menon et al. 2017), we

examine how different participants are in terms of knowledge and how participants

with different knowledge drive innovation performance. Although the role of

experience has been examined in the crowdsourcing literature, little is known about

how the characteristics of participants’ experiences have an effect on their innovation

outcomes. Inspired by the diversity literature on the distribution of knowledge, our

study intends to answer the following research question: how do crowd participants

with different knowledge distributions affect their collective innovation performance

in crowdsourced new product development?

To examine the various types of the crowd members based on their

knowledge (experience), we develop a typology of crowd participants based on the

framework of generalist and specialist, and propose hypotheses about their value

contributions to innovation outcomes by drawing on the diversity literature about

teams and groups. Data on new product development from Quirky.com allows us to

empirically identify six types of crowd participants. Furthermore, we find that a

crowd with a greater proportion of members who possess experiences that are both

high in diversity and in specialization is associated with better performance in terms

of product development efficiency. In addition, a greater proportion of participants

with a T-shaped experience distribution and with specialization in non-focal tasks in

the crowd was also found to positively affect performance. Finally, we find that

generalists are not an ideal type in our context. A series of supplemental analyses

further confirm our findings and offer additional insights into experience

accumulation, interaction effects and product effectiveness. By capturing the

dynamics of crowd construction in a crowd-creation context and examining the

characteristics of crowd member experiences, our study contributes to the literature

28

on crowdsourcing, open innovation, online communities, as well as to the theory of

diversity and group composition.

4.3 Literature Review and Theoretical Background

4.3.1 Crowdsourcing

Crowdsourcing has been studied by many scholars in recent years. It denotes the

outsourcing of internal tasks to outside individuals through an open call (Howe 2006;

Howe 2008). Crowdsourcing typically calls for collective intelligence to facilitate the

process of new product development, business analytics and problem-solving.

However, different types of crowdsourcing exist and have been investigated by

different research streams (Huang et al. 2012; Moqri et al. 2014). Here, we review

major forms of organizing crowds for innovation (Geiger et al. 2011; Pedersen et al.

2013): competition (e.g., TopCoder), idea generation (e.g., IdeaStorm and Giffgaff)

and collaboration (e.g., Lego). These organizing approaches are in line with the recent

research agenda for crowdsourcing (Estelles-Arolas and Gonzalez-Ladron-de-

Guevara 2012; Majchrzak and Malhotra 2013).

The first organizing approach is competition-based, where crowdsourcing

participants provide their solutions to a specific task such as logo design, and only

those who submit the best solutions are selected as winners and earn the rewards.

Competition-based crowdsourcing is typically regarded as an auction or a contest and

economic models are used to investigate how participants behave in the contest

(Archak and Ghose 2010; Archak and Sundararajan 2009; Huang et al. 2012; Koh

2014; Yang et al. 2009; Zhang et al. 2017). Factors affecting crowdsourcing quality

(Krcmar et al. 2009; Yang et al. 2009) and motivation (Hou et al. 2011; Jiang and

Wagner 2014) have also been examined. In these studies, how to attract a greater

number of problem solvers (project level) and how to win the contest (individual

level) are the focal questions examined. Another way to organize crowd participants

is through idea generation, which is typically adopted by firms to crowdsource ideas

29

for new products and services (Bayus 2013; Ramaswamy and Gouillart 2010) and

typically does not require a specific task for the crowd. Instead, through an open call,

firms benefit from new innovative ideas (Krcmar et al. 2009) and consumers also take

the opportunity to make their ideas come to life. Studies on this element of

crowdsourcing generally focus on how individual ideators’ knowledge and

experience affect their participation and performance. Bayus (2013) found that

successful experiences have negative effects on subsequent idea adoption and Hwang

et al. (2014) found that an individual’s performance in generating ideas can be

increased by her knowledge, especially knowledge depth. Huang et al. (2014), from a

different perspective, suggested that by accumulating experiences, users updated their

ability and understanding of the firm’s implementation costs on their ideas to provide

better ideas. The adoption and quality of ideas are the focal interest for this

organizing approach in the literature.

The previous two ways of organizing for crowdsourcing, mainly focus on the

collection of ideas or solutions from the crowd. Differently, the third recent way of

organizing enable collaboration among participants in the crowd so that they

collaboratively work toward a collective outcome. This approach highlights the depth

of crowdsourcing for creating more tangible outcomes from ideas through the

integration of the co-creation process (Paulini et al. 2013). Conceptual models

including the peer-production model (Haythornthwaite 2009; Nguyen et al. 2013) and

patterns of collaboration (Nguyen et al. 2013; Vreede et al. 2009) have been used to

provide insights into the collaboration process. Paulini et al. (2013) investigated the

collaborative design process in innovation communities through qualitative analysis

of communication in online forums. However, discussion about this form of

organizing in crowdsourcing is still limited in the literature. This form of organizing,

in general, takes the opportunity to organize the crowds for co-creation and exhibits

great potential with high crowd engagement. Therefore, more theoretical and

empirical examinations towards the efficiency and effectiveness in this crowd-

30

creation process are required to better understand the collaborative form of

crowdsourcing for value co-creation. Our study focuses on this form of organizing in

crowdsourcing and tries to fill this gap.

4.3.2 The Role of Experience in Crowdsourcing

Our study is also related to the stream of literature about knowledge or experience in

crowdsourcing. Knowledge plays an important role in innovation tasks and

crowdsourcing, and a series of studies have shown the effects of experience in

crowdsourcing. Most of them focused on the effects of learning from prior

experiences on an individual’s behavior in crowdsourcing contests. Archak and

Ghose (2010) examined the learning-by-doing effects at TopCoder and they found

that coders would both myopically learn from their experience through participating

in the same programming language projects and try other new language projects in a

forward-looking manner. Huang et al. (2012) also examined experiential learning at

Threadless, showing that experience reduces the effort in submitting solutions.

Menon et al. (2017) further compared downstream and upstream experiences to

understand the effects of related experiences on individual performance. However,

past experience does not always improve an individual’s performance. Successful

experience in idea generation was shown to cause cognitive fixation on ideators and

negatively affect their subsequent performance (Bayus 2013). In addition, other

outcomes such as subsequent participation (i.e., users with unsuccessful experiences

may leave the community) and strategic behaviors (i.e., experienced users are more

likely to strategically choose the time and difficulty of task participation) were also

investigated (Huang et al. 2014; Yang et al. 2008).

The existing literature provides evidence that a participant’s prior experience

does matter in crowdsourcing, but competing effects are identified at the individual

level. Our study, in this regard, extends previous research by examining the role of

various dimensions of experience in past crowdsourcing tasks in crowdsourced

31

innovation at the group level, which is particularly important in the value co-creation

process.

4.3.3 Generalist and Specialist

Our research focus on the distribution of participants’ knowledge is in line with the

framework of generalist and specialist in the diversity literature. Generalist and

specialist are generally defined by the distribution of their knowledge (Rulke and

Galaskiewicz 2000). Based on the portfolio of knowledge and experience, generalist

and specialist can be determined by how diverse/specialized their experience and

knowledge are (Boh et al. 2007; Kang et al. 2012; Narayanan et al. 2009). The

diversity literature suggests that generalists usually possess higher knowledge

diversity (breath), while specialists possess deep knowledge within restricted

domains.

It has been widely shown that generalists (with greater knowledge diversity)

can perform better and be more productive. Greater knowledge diversity is regarded

as a source of creativity (Taylor and Greve 2006), and generalists have the ability to

learn new knowledge more efficiently. They know how to learn new knowledge and

skills with less error because they may better relate to their existing stock of

knowledge which has more hooks for relating because of its great diversity

(Narayanan et al. 2009). When facing a new task, they are more likely to find out

related and helpful solutions from their known solutions because they have more

diverse experiences in performing tasks. (Narayanan et al. 2009). In addition, Hwang

et al. (2014) proposed that broad knowledge can induce novelty and creativity (i.e.,

think outside the box) because greater knowledge breadth facilitates the search of new

ideas and the recombination of existing knowledge. Bayus (2013) found that the

diverse experience in commenting activities could mitigate the cognitive fixation

problem in idea generation. That is, the diversity of knowledge domains, or knowing

other different areas is able to expand one’s perspectives in creating ideas and reduce

32

the cognitive constraints of repeating successful experiences. Also, from a group

perspective, Rulke and Galaskiewicz (2000) found that having more generalists in a

group could enhance group performance by facilitating knowledge exchange and

sharing as there will be a greater likelihood of having common ground across

individuals, which is essential to knowledge exchange. These findings imply that

diverse experience (i.e., generalists) should help to enhance performance.

Conversely, some studies caution that the diversity of experience may hinder

performance. The variety of experience has an inverted U-shaped effect on software

maintenance productivity, which means that too much diversity may harm

productivity (Narayanan et al. 2009). The diverse experiences, although benefit

performance with broader knowledge base and perspectives, may cause great loads of

cognition or memory and increase the difficulty of searching for knowledge and ideas

(Johnson and Hasher 1987). Also, the effect of experience variety was shown to be

moderated by tasks relatedness (i.e., the overlap between the current task and past

experiences) (Armstrong and Hardgrave 2007; Boh et al. 2007). Thus, it is not always

the case that diversity of experience improves performance.

On the other hand, there is also evidence suggesting that specialists (with

deep knowledge in limited domains instead of knowledge in diverse domains albeit of

limited extent) can perform better and be more productive. The literature in software

development has shown that specialized experience enhances team learning and

productivity, generally through experience curve and learning-by-doing (Boh et al.

2007; Huckman et al. 2009; Kang et al. 2012; Narayanan et al. 2009). Hwang et al.

(2014) also showed that in the innovation context, generalists with deep knowledge in

at least one domain could generate better ideas than those with shallow but diverse

knowledge, emphasizing the importance of knowledge depth in innovation. This is

because the depth of knowledge help to improve the feasibility of ideas, which might

be low when an individual only creates innovations with diverse knowledge (i.e., she

may generate some novel but unrealistic ideas). However, other studies also showed

33

that specialized experience is not always beneficial for performance and productivity.

Specialization in some knowledge types may cause learning myopia and undermine

the ability to learn new knowledge (Archak and Ghose 2010). In addition, there is a

learning plateau effect such that the effect of past experience is marginally decreasing

and becomes less significant after a certain point (Argote 2012). Cognitive fixation is

also more likely to occur as specialized experience increases (Bayus 2013). Thus,

there are also conflicting results regarding the role of specialists and specialized

experiences.

Given the conflicting results in the literature, instead of measuring group-

level experience directly, we develop a typology of different types of crowd members

based on generalist (diverse experience) and specialist (specialized experience) and

use this to develop hypotheses using the mechanisms in the diversity literature. This

approach allows us to differentiate the effects of member types (i.e., subgroups) in the

collaboration process and examine the role of experience diversity through a

composition perspective.

4.4 Theory and Hypotheses

In this section, we develop our theory concerning different member types and how

they contribute to product development outcomes. To better clarify the member types

in the crowd and elaborate the mechanisms in our hypotheses, we first introduce our

study context, and then develop a typology of members and hypotheses related to

their effectiveness in collective innovation.

4.4.1 Study Context

Our study context is new product development at Quirky.com, a crowdsourcing

platform for online inventions. As a company focusing on community-driven new

product development, Quirky uses a crowdsourcing approach for both its product

portfolio and product development. Users can submit product ideas using a problem-

solution paradigm. Then Quirky, along with its community members, will choose the

34

promising ideas and start to develop the product concepts. During the development

process, Quirky also crowdsources important product development tasks and

decisions to community members through different development projects. When a

product is released into the real world, Quirky will manufacture and sell the product

through various channels (e.g., via partnerships with major brick and mortar retailers

as well as via Quirky’s own e-commerce website). Anyone who has contributed to the

development of the product, including the initial inventor (i.e., the individual who

submitted the original product idea), community members (i.e., those who

participated in the product development projects), and Quirky (who is in charge of

manufacturing) will share the proceeds from the product sales.

The first stage of Quirky’s business model, called Invent, comprises the idea

generation process where new product ideas from the crowd are submitted. It includes

both competition among ideators and collaboration from the community through

comments, identification of similar products and social interactions among members.

Promising ideas are then selected into the development process, called Influence

stage, where Quirky sets up a series of collaborative projects based on the tasks

crowdsourced to the community. In these collaborative projects, community members

can directly create submissions of their own solutions or submit improvement to

others’ submitted solutions, or indirectly contribute to the project by commenting or

voting on others’ submissions. Finally, when a product successfully completes its

development (on paper or as a prototype), it will be launched into Concept Portfolio

and prepared for production. Specifically, our study focus is the second stage (i.e., the

Influence stage), which comprises the crowdsourced product development process.

This process is characterized by the co-creation from Quirky and the crowd, and the

quality of this process is generally captured by the efforts (e.g., time of development)

and the value of the product (e.g., whether the product moves further). In addition,

although Quirky emphasizes the concept of team in the Influence stage, we find that it

may not completely fit the term “team” (Dissanayake et al. 2014) because of the

35

mixture of modes1 and the large number of participants in the co-creation process.

Instead, we use “crowd” to characterize the participants in a whole product

development process (Pedersen et al. 2013).

4.4.2 Experience Typology

To understand how different participants contribute to their collective innovation

outcome, we first present a typology of crowd members (participants) in

crowdsourced new product development following our research context. We define

each type based on the distribution of prior experiences in crowdsourcing tasks.

Although there are two generic types of professionals (i.e., generalists and

specialists), hybrid forms may emerge depending on the concentration of experiences

with respect to some focal task (or knowledge requirement). Specifically, in line with

the concept of experience in our study context, we use members’ prior experiences in

other crowdsourced product development projects to quantify three metrics: diverse

experience, specialized experience and concentration of experience.

Diverse experience is defined as the breadth of task areas the member has

experienced in past crowdsourced product development projects. Specialized

experience is defined as the depth of prior experience the member has obtained with

respect to some focal task. Here, focal task refers to the tasks in which the member

participates for the current product development project. However, using only diverse

and specialized experience cannot portray the whole picture regarding generalists and

specialists. If one has both highly diverse experience and highly specialized

experience, the domain in which the experiences are concentrated will matter.

Concentrated experience in limited domains renders one a T-shaped professional,

1 The process Quirky adopts for harnessing collective intelligence is Collection and

Collaboration (Malone et al. 2010). At the project level, Quirky crowdsources specific tasks to

the community and community members independently work on the solutions, indicating the

Collection mode. But at the product level, different tasks are interdependent and members

should consider others’ works in order to complete their own work, consistent with the

Collaboration mode.

36

while equally distributed specialized experience on all domains leads to an

omniscient expert (Hansen and Von Oetinger 2001). Thus, in our study,

concentration of experience is the extent of concentration of all the experiences the

member has obtained in past product development tasks, which implies the balance

between diverse and specialized experiences (Kang et al. 2012; Narayanan et al.

2009). Based on these three metrics, we can specify the distribution of participants’

experience and classify crowd members into different types. Table 4-1 shows a

theoretical typology of crowd members according to combinations of values for these

dimensions.

When the extent of diverse experience and experience concentration are all

high, such a member can be classified as T-shaped with respect to the task

requirements (Hansen and Von Oetinger 2001; Kang et al. 2012; Narayanan et al.

2009). If the specialized experiences are concentrated on a focal task, then the

member is considered T-shaped with respect to the focal task. Alternatively, if the

specialized experiences are concentrated on some other non-focal task, then the

member would be considered as T-shaped but in tasks other than the focal task

requirement. When diverse experience and specialized experience are high but

experience concentration is low, which means that the experiences are sparsely

distributed in different types of task, the member will have highly specialized

experiences in many of the task types, indicating an omniscient type (i.e., omniscient

polymath). The fourth type indicates a type of generalist, which has broad

experiences across different tasks but limited experiences in each of the different

types of tasks. The fifth type represents a specialist in the focal tasks, with specialized

experiences concentrated in the focal areas. In contrast to this (i.e., the sixth type),

when the specialized experience on focal tasks is low, this means the experiences are

concentrated on other non-focal tasks, indicating a specialist in some other tasks. The

remaining combinations are distinct from the others. When all of the three metrics are

low, the member would only have few experiences in each domain, suggesting the

37

novice type. Therefore, the seventh type corresponds to a group of inexperienced

members. However, it is not possible to identify any specific type when only

specialized experience is high because such a combination is theoretically impossible.

Thus, a total of seven types exist in the typology. In the empirical analysis, we

classify the type of crowd members based on such a typology.

Table 4-1. A Typology of Crowd Members by Experience

No.
Diverse

Experience

Specialized

Experience

Experience

Concentration
Type

1 High High High T-Shape in focal tasks

2 High Low High T-Shape in other tasks

3 High High Low Omniscient

4 High Low Low Generalist

5 Low High High Specialist in focal tasks

6 Low Low High Specialist in other tasks

7 Low Low Low Novice

Note: The typology consists of seven types. The remaining possibility (i.e., low in diverse

experience, high in specialized experience and low in experience concentration) is

theoretically impossible and does not indicate any meaningful type.

4.4.3 Hypotheses Development

Consistent with the criteria of our typology, our hypotheses are based on the three

metrics of experience and the types emerging from them. Specifically, we provide

theoretical arguments about experience diversity, specialization and concentration in

crowdsourced new product development to further predict how each type of crowd

member would influence the product development process based on their value

contributions to collective innovation performance. To develop the hypotheses about

the crowd, we apply the mechanisms from the diversity literature on teams and

groups, and discuss both individual level (each crowd member) effects from the

creativity perspective and group level (the whole crowd) effects from the information

processing perspective.

In crowdsourced new product development, a group of individuals form a

crowd and collectively work on tasks that are designed to produce ideas or solutions.

38

As crowd members need to search their own knowledge bases, their prior experience

in the relevant tasks become critically important. Therefore, diverse experiences

would provide members with richer knowledge components and a greater number of

available ideas or solutions (Weisberg 1999). The availability of ideas is regarded as

the basis for generating novel outputs (Taylor and Greve 2006). Therefore, diversity

of experience should help individuals to search and combine existing knowledge to

generate creative and novel works (Hwang et al. 2014; Taylor and Greve 2006; Wulf

and Schmidt 1997), resulting in better performance. In addition, participants in the

crowd do not always work independently. Besides collective works (i.e., independent

tasks), they also collaboratively commit to a joint outcome (i.e., the product) with

interdependencies among their tasks, ideas and solutions (Malone et al. 2010).

Members in the crowd will interact with one another like in a virtual group or

community. From this perspective, members with high experience diversity will be

able to facilitate knowledge transfer through more effective group communication

(Rulke and Galaskiewicz 2000). Other members that may lack task-relevant

information and experience would be able to receive assistance from these members

with high experience diversity (Paulini et al. 2013). Also, the total level of diversity

in terms of task experiences in the crowd can be further increased by experience

diversity because of the interaction and broader exposition of knowledge (Dahlin et

al. 2005; Nonaka and Takeuchi 1995), eventually leading to more creative ideas or

solutions from the crowd. Thus, we argue that experience diversity is positively

associated with crowd performance (Huckman et al. 2009).

In terms of the crowd member types defined in our typology, four are

associated with high diverse experiences. However, we notice that only the type

“generalist” independently conforms to our argument for diverse experience, while

others such as “T-shaped specialist” and “Omniscient” are also connected with the

other two metrics (i.e., specialization and concentration). For generalists, they serve

as the source of ideas and the driver of knowledge transfer to increase the diversity

39

and creativity of the crowd (Hwang et al. 2014; Perry-Smith and Shalley 2003; Rulke

and Galaskiewicz 2000). Thus, a crowd with more generalists is expected to perform

better. Since our crowd composition is conceptualized as member types within the

crowd, we define the baseline as the novice type who do not have much experience in

any dimension and use the proportion of member types to explain the effects.

Therefore, for a given size of the crowd, a higher proportion of generalists will

benefit the crowd in terms of performance, which leads to higher efficiency (for the

firm) in the development process. We propose:

Hypothesis 1: A crowd with a greater proportion of generalists will have better

performance.

Besides diverse experiences, crowd members also rely on specialized

experiences to generate ideas or solutions for the crowdsourced tasks. From the

individual level perspective, an individual in the crowd has to figure out the problem

in the task and search from her existing knowledge to produce some outputs.

Although specialized experience does not increase diversity, it could reduce the cost

for the crowd member to work on the final output (Huang et al. 2012; Narayanan et

al. 2009). Therefore, even though task specialization does not necessarily lead to

novel or creative works, the efficiency and quality of the task output could be higher.

Furthermore, although diversity can help to generate a greater number of ideas, it may

often lead to unexpected outcomes due to the lack of maturity or uncertainty of the

generated ideas (Taylor and Greve 2006). Deep knowledge, from this view, can help

individuals in the crowd effectively combine their knowledge and make their

solutions more feasible (Boh et al. 2014; Hwang et al. 2014). Thus, the ideas or

solutions generated by the individuals in the crowd may be better when they possess

deep expertise in the task domain. In addition, the same expectation emerges from the

collaborative perspective (i.e., crowd level). Members with high levels of specialized

experiences can provide practical suggestions for improving the ideas of other

members who do not possess deep knowledge (Paulini et al. 2013). The deep

40

knowledge shared by these members will help to make the ideas or solutions from the

crowd more feasible and reliable, reducing the uncertainty resulting from diverse but

shallow knowledge in the product development (West 2002). Therefore, we expect

that specialized experience is positively associated with crowd performance.

The two types of crowd members in our typology that conform to our

arguments about specialized experience are “specialists in the focal tasks” and

“specialists in non-focal (other) tasks.” Focal tasks, as defined earlier in our typology

discussion, refer to the tasks in which the crowd member participated in the product

development process. Thus, having more experience in focal tasks will not only

guarantee an individual’s own work quality but also increase the reliability of others’

works more effectively. This effect, on the other hand, may not be salient for

specialized experiences in non-focal tasks due to the absence of direct interaction and

specialization. Following the same baseline in H1, we propose:

Hypothesis 2: A crowd with a greater proportion of specialists in focal-tasks will

have better performance.

In addition to diverse and specialized experiences that affect crowd

performance directly, the concentration of experience may also matter. The

concentration of experience shifts the interaction between diversity and

specialization, leading to more nuanced types of individuals in the crowd. In

traditional task contexts, a balance of diversity and specialization (i.e., T-shaped) will

be preferred (Narayanan et al. 2009). It may be costly to be specialized in many

different areas and acquiring knowledge that is less relevant can be ineffective for

task performance. Also, a concentrated focus on limited knowledge domains may

enhance the learning outcome (Yang et al. 2008). However, given the innovative

nature of tasks and voluntary participation in crowdsourced new product

development, a balance between diversity and specialization may not be necessary. In

a context of innovation, both diverse experience and specialized knowledge are

important (Boh et al. 2014). Without deep knowledge in broad domains, individuals

41

cannot combine their knowledge effectively to reduce the uncertainty of creative

works and generate reliable solutions (Hwang et al. 2014; Novick 1988).

Furthermore, due to the interdependencies among tasks in crowd-based product

development (Malone et al. 2010), only having (limited) specialization in the focal

domains will be insufficient because it is necessary to refer to other tasks or crowd

works to effectively search from individual’s own knowledge, which requires some

understanding of non-focal tasks. Moreover, due to the nature of voluntary

participation and knowledge sharing in online communities (Ren et al. 2015),

participants in the crowd could voluntarily choose whether or not to work on a task

and easily access past contributions on the digital platform instead of costly searching

from offline archives, so the effect of cognitive learning cost may not be salient in

this context (Archak and Ghose 2010; Huang et al. 2012). Thus, we argue that the

concentration of experience will not matter much in crowd performance.

The types of crowd members relevant to experience concentration are the “T-

shaped” and “Omniscient” members. Combining our discussion about diverse

experience and specialized experience, both of these types have the potential to

enhance crowd performance. Thus, crowd member types with both a high level of

diverse experience and specialized experience will lead to similar prediction. The two

types – T-shaped specialist in focal and other tasks – possess both a high level of

diversity and depth in prior experience. Similarly, the omniscient type members have

a high level of specialization in most of the domains. Consistent with our discussion

about specialists in non-focal tasks, the effect of specialization is not salient for T-

shaped specialist in other tasks either, but diverse experience is expected to matter.

Given our discussion about experience concentration, we do not expect significant

differences due to concentration. Thus, in line with the same baseline condition in H1

and H2, we propose:

Hypothesis 3a: A crowd with a greater proportion of T-shaped members in focal

tasks will have better performance.

42

Hypothesis 3b: A crowd with a greater proportion of T-shaped members in other

tasks will have better performance.

Hypothesis 3c: A crowd with a greater proportion of omniscient members will have

better performance.

4.5 Data and Method

4.5.1 Data Collection

We retrieved all product information and product development information from

Quirky with the details of crowdsourced projects in each product development

process, including the type, task, submissions and comments for each project. User

profiles and information related to the idea of each product were also retrieved to

build a holistic picture of the product development process. The time window of our

data is from May 2009, the start of Quirky’s operations, to June 2014. The full dataset

includes 828 product development campaigns, with a total of 3,044 sub-projects for

these products, as well as 33,789 unique users who participated in the crowdsourced

product development process. In our analysis, we focus only on those products with

community participation (574 products) so that a crowd was actually constructed in

the product development process. They were used to measure members’ prior

experiences, which are then used to classify the members into experience-based

types. Furthermore, some products were not completed (i.e., stopped at the early

development stage) due to some unexpected development difficulties. Since we do

not have complete information about these products, they were not included in the

estimation sample. Nonetheless, crowd members’ experiences in these products were

included. We also only use data starting from 2010 since members on the platform

generally do not have any prior experiences in the first year.2 Finally, we excluded

repeated products which are based on the same idea since they usually have

duplicated development processes. Outliers and other records with incomplete

2 That said, data from 2009 were used in capturing the experiences of crowd members that

participated in products from 2010 and onwards.

43

information were also examined and excluded from the analysis dataset.3 Our final

sample includes 425 product development campaigns (with 2,097 sub-projects and

29,980 crowd members) that were developed at least on paper between 2010 and

2014.

4.5.2 Measures

To measure the prior experience, we first identified the crowd members in each

product’s development. Specifically, we use submissions as the criterion for member

selection. A user is considered as a member in the crowd if he or she submits at least

one contribution to the projects during product development.4 Thus, we set this

criterion for crowd members and measure experiences based on user contributions

within each product development. This procedure generated 274,281 observations of

product-user pairs.

We quantify members’ past experiences based on the three metrics – diverse

experience, specialized experience and concentration of experience – in terms of two

aspects – process and domain. Similar to related studies (Pedersen et al. 2013), we

note that the crowd in product development is dynamically constructed. Also, the

experiences of members are dynamic and product-crowd specific. Thus, we computed

each member’s experience in each product using the join time, which is the time at

which the member started to participate in the product development, as the cutoff

time for experience. In addition, experience is accumulated at the product level,

which means all relevant experiences for a product development process can be

3 The rationale of this step is that our dependent variables are about Quirky’s decision on the

development process and product. Although we believe Quirky should make consistent

decisions on the outcomes, there may be still some disturbances or unobserved factors that can

lead to extreme or unexpected decisions. Therefore, the exclusion of these observations can

reduce the potential errors in the regressions. Actually, our results are consistent with the

inclusion of these outliers.

4 As discussed in section 3.1 (study context), submissions are regarded as the core contributions

from crowd members. Although peripheral contributions exist in the product development, they

are usually not creative works and not influential. Future work may examine the significance of

peripheral contributions in this context.

44

included in a member’s experience portfolio only after the product development

completes (or is stopped prematurely). This is because in the product development

context, the product is a whole entity or unit for acquiring complete experiences (i.e.,

partial experiences are not counted). This procedure allows us to capture both the

dynamic crowd formation process as well as the differences in experience

accumulation for each user within a product development campaign.

In our context, there are five different types of projects corresponding to five

specific tasks (i.e., a 1-to-1 mapping) and eight product categories corresponding to

eight domains. Process tasks (projects) include Research, Design, Styling, Naming

and Tagline setting, while domain tasks (categories) are Electronics, Health, Home,

Kitchen, Parenting, Play, Travel and Wildcard. Projects are mainly about the

experience in performing specific tasks in the process of product development, while

categories are related to domain knowledge on product development in different

categories. Thus, for the process task aspect, we operationalized diverse experience as

the number of distinct tasks the user has participated in past product development

projects. Specialized experience was operationalized as the amount of prior

experience in the focal tasks, normalized by the number of tasks. Specifically, it could

be written as SpecializedExperienceij = /iT
ij ij Exp P , where Pi is the number of task

types crowd member i has participated in the focal product development, Ti is the

total number of product development campaigns in which the user has participated,

and Expij is the number of focal tasks the user participated in the development of

product j. Similarly, for domain tasks, diverse experience is measured as the number

of distinct product categories the user has participated, and specialized experience is

operationalized as the numbers of product development campaigns that are in the

same domain (category) with the focal development campaign the user has

participated.

To measure the concentration of experience for crowd members, we use the

45

Herfindahl-Hirschman Experience Index (HHEI), which is derived from the

Herfindahl-Hirschman Index frequently used to measure market concentration in

economic studies. This measurement has been used in software development studies

to represent the concentration of experience (Kang et al. 2012; Narayanan et al.

2009). Specifically, the computation of experience concentration by HHEI is

2
(/)

N
ik ik Exp SumExp , where N is the total number of distinct tasks (N=5 for

process tasks and N=8 for domain tasks) in all product development campaigns, Expik

is the number of task experiences of member i in task type k, and SumExpi is the total

number of tasks crowd member i participated in the past across all the task areas.

4.5.3 Identifying Experience-based Crowd Member Types

With the operationalizations of three metrics, we computed the time-varying (i.e.,

product-varying) experience measures for each crowd participant within each product

development process. Then a clustering approach was used to identify the types of

members for each product-crowd pair. Cluster analysis has been widely used in the

related literature as an exploratory approach to empirically discerning different types

of users given patterns of observable behaviors (Hahn and Lee 2013; Lin et al. 2014).

Clusters are partitioned to have high intra-cluster similarity and inter-cluster

dissimilarity. We adopt the two-step procedure in Ketchen and Shook (1996) to

conduct the cluster analysis. First, we performed hierarchical clustering (Maimon and

Rokach 2005) and investigate the dendrogram to determine a suitable number for

clusters. We also validate the solution using the k-means clustering approach with

model fit indicators. Specifically, we use Caliński-Harabasz index (Caliński and

Harabasz 1974), which captures the balance between within-cluster sum of squared

errors and between-cluster sum of squared errors. After determining the suitable

number of clusters, we use the k-means approach to assign the membership of

observations to clusters on the 274,281 product-member pairs. Finally, we matched

the clustering results (i.e., generated clusters) to our typology.

46

4.5.4 Empirical Model

To test the impact of each type of crowd members on product development

performance, we build a product-crowd level econometric model. The variables used

in our model are specified as follows.

Dependent Variable

Development Duration (Duration): We measure product development performance

based on the duration of the crowdsourced product development projects.5 Several

reasons support the use of development project duration to measure crowd and

development performance. First, in a specific project, Quirky (usually a team

assigned for the product) will review the submissions and close the project when it is

deemed that it can utilize the solutions for development decisions. Therefore, the

duration captures how Quirky perceives the quality the crowdsourced work. Second,

in the product development process, Quirky will typically control the quality of

product and complete the development process only if reaches an acceptable level of

quality. Thus, all else being equal, a shorter duration means that Quirky spends less

time on examining the crowd contributions from multiple tasks, implying better

performance from the crowd. In contrast, a longer development duration implies that

the crowd did not generate satisfactory solutions for Quirky and as a result took

Quirky more time for overall product development (i.e., close the projects and launch

the product). However, since the crowd dynamically emerges, using the product

development duration from its start to end may raise some confounding and causality

issues (i.e., reverse causality whereby a longer time causes more participants and

more experiences of participants). To address this issue, we adopt an aggregation

approach for the operationalization. Since the crowdsourced product development

5 Ideally, the dependent variable should be the overall performance of the crowd (e.g., the

quality of their contributions). Unfortunately, it is not possible to observe each crowd

member’s actual quality to measure the internal crowd-level performance with only publicly

observable data on product development outcomes.

47

(i.e., crowd work) is comprised of several development projects and solutions are

typically submitted during the initial days in these projects, the durations of all

development projects are used. Specifically, we computed the duration of each

project and summed them to derive the duration at the product level. Such an

operationalization helps to avoid the issues caused by the dynamic formation of the

crowd and does not affect the validity of the performance measure.

Independent Variables

Type of crowd member: To examine the impact of experience-based member types

on crowd performance, we used the proportion of each experience-based user type in

the crowd as the independent variables (Hahn and Lee 2013; Inbar and Barzilay

2014). These types are determined by the empirical identification of crowd member

types from the cluster analysis.

Control Variables

Given that our dependent variable for crowd performance is product development

duration, we need to control for several factors that not only affect crowd

performance but also product development time.

Number of Participants (Members): The number of participants who

submitted solutions, ideas and other creative works to the product development

campaign is controlled. In our context, because each member can only submit a

limited number of solutions in each sub-project, the number of participants captures

not only the size of crowd but also the number of contributions. In addition, it is

necessary to control the size of crowd when the proportion of different member types

are used as independent variables.

Number of Projects (NumProjects): Since we use the sum of project durations

as the dependent variable, it is necessary to control for the number of projects. In

addition, the number of projects indicates the amount of required crowdsourced work

for product development, which is also useful for explaining the duration of product

48

development.

Brainstorming (HasBrainstorm): Brainstorming is an offline activity for

product development using an expert panel. Typically, if a brainstorming session is

conducted, a video section will be displayed in the product’s timeline. It may help to

attract different members from the crowd to participate in the tasks and facilitate the

overall development process. Since brainstorming is done before the start of product

development, we can use it as a control variable. We use an indicator variable to

indicate whether the product used a brainstorming session.

Inventor Products (InventorProducts): We also control the characteristics of

the product inventor (idea submitter). Specifically, we use the number of prior

successful ideas (selected into development stage) created by the inventor as a control

variable. The successful experiences of product inventors may help to attract more

participants and make the product more likely to be successfully developed.

Number of Comments (Comments): We control for the total number of

comments on the submissions by the crowd members during the product development

process. This captures the interaction and collaboration among the crowd participants.

Average Crowd Ideation Influence (AvgIdeaInfluence): Since each crowd for

product development could be different due to members’ own intelligence levels or

other experiences, it is necessary to account for the confounding effect caused by the

crowd intelligence. Specifically, we utilize the performance of crowd members in the

Invent stage. We compute the average amount of influence points (a measure of

contribution for ideation stage defined by Quirky) across products earned by each

crowd member before joining the crowd, and then take the average across the

members within the crowd.

Product-Specific Factors: The product development process is usually

affected by the complexity and uniqueness of the product. Since it is difficult to know

a-priori the complexity of the final product, we use three proxy variables to capture

product-level heterogeneity. We use the number of comments, the number of similar

49

products and the length of solution in idea description to control for product

characteristics. First, we control for the number of comments in the ideation (invent)

stage of the product (IdeaComments). We only compute the number of comments

before the product moves into development (i.e., prior to selection for product

development). More community feedbacks may indicate that the product has more

elements to be discussed, reflecting greater complexity. Next, we control for the

number of similar products submitted by community members about the product

(SimilarProducts). The existence of more similar products may suggest lower

uniqueness of the product idea but higher number of elements in the product. We use

this to control for the uniqueness of product. Finally, the length of solution provided

by the ideators is controlled for the complexity of product idea (Solution). Since idea

submitters follow a problem-solution paradigm, the solution indicates the possible

approaches for product design and signals the complexity of the problem.

Category and Time: We also control the category of each product using

dummy variables. We classify the eight categories into three main categories:

electronic-related, home-related and play-related.6 Year dummies are also controlled

for time trends, policy change and year-specific effects.

In the empirical analysis, we log-transform product development duration,

number of participants, number of comments, average crowd intelligence, number of

ideation comments, number of similar products and length of solution because of

their scales and skewed distributions. Since our data is cross-sectional at the product-

crowd level (i.e., product development campaign with a crowd as the unit), we used

OLS to estimate the parameters in the model. To address the potential sample

selection issue of using completed product development campaigns with crowd

participation, we use Heckman selection model to test the robustness of our results

6 This is to classify the categories into intuitive groups to identify their specific effects. The

main results of key independent variables are actually not affected by including all the category

dummies.

50

(see discussions in §4.6.3).

4.6 Results and Discussions

4.6.1 Clustering Results

We first performed hierarchical clustering to determine the suitable number of

clusters. However, given that our sample includes 274,281 observations, it is not

practical to employ hierarchical clustering (or other approaches that use distance

matrix to cluster) due to computational limitations.7 To overcome this, we employed

a bootstrapping approach where we selected a random sample of 10,000 observations

to perform hierarchical clustering and repeat the process with different random

subsamples. The dendrograms indicate that the solution of six clusters is optimal and

stable across bootstrapped samples. We also computed the Gap statistic (Tibshirani et

al. 2001) to verify the reliability of clusters across subsamples. Table 4-2 presents the

results in 4 subsamples from 2 to 10 clusters. The first peak was selected to indicate

the optimal number of clusters and all the subsamples suggest the solution of six

clusters. We then performed k-means cluster analysis on the full sample using six

clusters solution. To further verify the results, we calculated Caliński-Harabasz

indices from 2 to 10 clusters. The peak of indices suggests the reasonable number of

clusters is six in the data (also shown in Table 2). Finally, as the k-means approach

randomly selects the initial values of cluster centroid (starting points), we ran the

analysis for the solution of six clusters using multiple random starting points (with

1,000 replications) and the clusters are quite stable in terms of cluster centroid and

size (reliability > 0.8). In addition to the quantitative approaches for understanding

clustering results, we compared the generated clusters and found that there aren’t any

7 The hierarchical clustering (or other distance matrix based approaches) requires the distance

matrix between each observation, which will generate N(N-1)/2 pairs in the matrix. Given that

our sample size (274,281), it is impossible to address the exponentially increased number of

pairs in the matrix (approximately 280GB memory). Thus, we follow the existing literature to

use random subsamples. In addition, due to the dynamic nature in our sample, we use k-means

approach on the whole sample to verify the clusters.

51

additional meaningful clusters when number of clusters is above six, lending greater

support for our six-cluster solution.

Table 4-2. Robustness Checks of Clustering Solution

Gap Statistic

Caliński -

Harabasz Index

#Clusters Sample 1 Sample 2 Sample 3 Sample 4 Full Sample

2 1.4462 1.4625 1.4491 1.4733 76,299

3 1.5262 1.5415 1.5407 1.5567 445,057

4 1.6691 1.6351 1.6413 1.6834 545,461

5 1.7358 1.6879 1.7390 1.7499 566,929

6 1.7596 1.7680 1.7549 1.7964 573,522

7 1.7312 1.7662 1.7354 1.7861 548,585

8 1.7808 1.7818 1.7534 1.8010 529,387

9 1.7571 1.7638 1.7654 1.7792 511,941

10 1.7930 1.7922 1.8007 1.7931 474,397

Table 4-3 summarizes the clusters and the corresponding crowd member

types. We categorize each cluster by comparing the mean of each metric within

cluster with their mean for the whole sample to match our typology. Interestingly, not

all types in the theoretical typology were identified from our data. T-shaped in non-

focal tasks (Cluster 1) and Generalist (Cluster 2) are matched to the types in our

typology. Two types for novice can be distinguished (novice with zero experience

and novice with very low experience): New comers (Cluster 4) / Triers (Cluster 6).

However, we found two types of omniscient members (i.e., those who have

specialized experience in most task areas) in our data – Cluster 2 and Cluster 5. Both

clusters have high levels of experience and low levels of experience concentration.

Cluster 2 shows a group of crowd members with a high level of both diverse

experience and specialized experience, but a moderate level of experience compared

to Cluster 5. Based on the statistics, we classify Cluster 2 as “Deep Generalist”

(Hwang et al. 2014) and Cluster 5 as “Omniscient” members (Kang et al. 2012). We

classify them based the pattern of process experience for better interpretation and

matching but note that these types are mostly consistent for both process and domain

52

tasks (except slight difference for Cluster 1 and Cluster 2).

In addition, we note that Cluster 6 could be specialists in other tasks (type 6

in the typology) based on the three metrics. However, when we consider the total

product level experiences of this cluster, we note that their experiences are quite

limited (around 1.3). Thus, they are actually more representative for triers instead of

specialist in other tasks. The reason for their high experience concentration is that the

computation of HHEI would cause extremely high value when a member has only

one or two experience in one or two task areas (i.e., one unit of experience in one area

does not necessarily mean a high concentration, even though the HHEI computation

results in an extremely high value). To further verify this, we computed a balanced

measure of HHEI by adding 1 experience in each task area before computing HHEI.

The clustering results can distinguish the cluster of triers with low experience

concentration from specialists in other tasks. Thus, a total of six types of members

were identified based on experience breadth, depth and concentration from the

empirical data.

Table 4-3. Clustering Results and Corresponding Types

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total

Type
T-shaped in

non-focal
Generalist

Deep

generalist

New

comers
Omniscient Triers

N 28,706 38,853 74,492 96,133 20,121 20,446 274,281

ProcessDiverse Exp 3.3191 4.3665 4.757 0.0000 4.9632 1.6352 2.7401

ProcessSpecialized Exp 3.4502 7.8074 38.117 0.0000 147.2767 0.7012 22.6756

ProcessExpConcentration 0.4718 0.3031 0.2861 0.2000 0.2634 0.7389 0.3113

DomainDiverse Exp 3.0367 4.1215 7.2245 0.0000 7.9906 1.0662 3.5294

DomainSpecialized Exp 1.1055 2.801 9.7364 0.0000 45.2437 0.3108 6.499

DomainExpConcentration 0.4101 0.3349 0.2316 0.1250 0.225 0.9682 0.2837

of Product Exp. 5.3481 12.5419 56.1804 0.0000 194.6382 1.3049 31.9702

Note: Six variables are used to cluster the crowd members. Based on the centroids of the clusters, we classify them by

comparing the centers and sample means. The generated clusters are matched with the theoretical typology except Deep

Generalist, which is newly conceptualized based on the characteristics of this cluster compared with other clusters.

4.6.2 Analysis Results

With the results of the cluster analysis, the independent variables were

53

operationalized as the proportion of five cluster types (out of the six identified). Thus,

the proportion of T-shaped in other tasks members (TinOther), deep generalists

(DeepGeneralist), generalist members (Generalist), Omniscient members

(Omniscient) and Triers (Triers) in the crowd are the five independent variables and

the largest type, the new comer type, is used as the benchmark type (i.e., as the novice

type). Table 4-4 shows the descriptive statistics of key variables and the correlation

matrix. Correlations between key variables were found not to be excessively high.

Heteroskedasticity-robust standard errors are used in the estimation. Variance

Inflation Factors (VIFs) for multicollinearity were checked and below the

recommended thresholds (all below 5 with the exception of a year indicator slightly

above 5) (Belsley et al. 2005; Cohen et al. 2013).

Table 4-4. Descriptive Statistics and Correlation Matrix

 Mean SD (1) (2) (3) (4) (5) (6)

1. Duration 154.3 160.2 1

2. TinOther 0.0999 0.0375 -0.24*** 1

3. Generalist 0.160 0.0644 -0.05 0.20*** 1

4. DeepGeneralist 0.277 0.106 -0.09 -0.13** -0.34*** 1

5. Omniscient 0.0585 0.0560 -0.09 -0.06 -0.45*** 0.32*** 1

6. Trier 0.0758 0.0290 0.04 0.15** 0.14** -0.26*** -0.16** 1

7. Members 539.6 385.7 -0.06 0.21*** -0.37*** -0.01 0.41*** -0.06

8. NumProjects 4.793 1.404 0.05 0.07 -0.04 -0.35*** -0.17* 0.12*

9. HasBrainstorm 0.129 0.336 -0.10* -0.01 -0.17*** 0.17** 0.21*** -0.11*

10. InventorProducts 0.605 1.645 0.08 -0.04 -0.18*** 0.06 0.10* -0.04

11. Comments 348 296.3 -0.04 0.13** 0.04 -0.40*** -0.35*** 0.17***

12. AcgIdeaInfluence 0.211 0.146 0.03 -0.08 0.13** 0.09 -0.19*** 0.05

13. IdeaComments 40.84 39.46 0.03 0.01 0.03 -0.17*** -0.17*** 0.10*

14. SimilarProducts 6.224 4.171 0.02 -0.08 -0.47*** 0.36*** 0.69*** -0.17***

15. Solution 191.8 82.71 0.05 -0.09 -0.12* 0.04 0.12* -0.06

 (9) (10) (11) (12) (13) (14) (15)

7. Members

8. NumProjects

9. HasBrainstorm 1

10. InventorProducts 0.06 1

11. Comments -0.10* -0.06 1

12. AcgIdeaInfluence -0.15** -0.05 0.06 1

13. IdeaComments -0.09 0.05 0.20*** 0.04 1

14. SimilarProducts 0.33*** 0.15** -0.38*** -0.32*** -0.19*** 1

15. Solution 0.09 -0.05 -0.16** -0.15** 0.02 0.19*** 1

Significance levels: *** p<0.001, ** p<0.01, * p<0.05

Table 4-5 presents the main analysis. We estimated our parameters

progressively by first estimating a model with control variables only (Model 1) and

then adding the independent variables of interest (i.e., crowd type variables) in Model

54

2. In Model 1, we only include the control variables. We observe that the effect of

number of participants is negative and significant (Members: =-0.264, p<0.01),

which means larger crowd and more crowd works facilitate (i.e., shorten) product

development. Attracting a greater number of crowd participants help to gather more

solutions and indicate better crowd performance. As an important component of

development duration, it is not surprising that the coefficient of NumProjects is

positive and significant (=0.125, p<0.01). The coefficient of HasBrainstorm is

negative but not significant (=-0.0601, ns). Although the brainstorm section could

help the crowd understand the product and be an indicator of product feasibility, it

does not seem to significantly affect crowd performance in product development. The

coefficient of ProductInventor is not significant (=-0.0137, ns), showing no effect of

inventor’s past success. Interestingly, the number of comments in the development

projects is positively associated with the duration of development (Comments:

=0.147, p<0.01), suggesting that more discussions among the crowd members

through comments does not lead to better performance. One possibility is that the

number of comments reflects the level of consensus (or lack thereof) in the

collaboration – more comments indicate that it is difficult for crowd participants to

achieve consensus in the collaboration. The coefficient of AvgIdeaInfluence in Model

1 is negatively (marginally) significant (=0.894, p<0.1), showing that on average a

more intelligent crowd would perform better by reducing development time. In terms

of the three proxy variables for product heterogeneity, they are for the most part

positively associated with product development duration (IdeaComments: =0.0986,

p<0.05; SimilarProducts: =0.366, p<0.01; Solution: =0.0383, ns). A greater

number of feedbacks through comments in the ideation stage indicates more

discussions and suggestions, which could be related to greater product complexity,

while more similar products may be an indicator for the lack of product uniqueness,

which is also related to the complexity for designing a unique and novel product. The

length of solution is not significant, which means the solutions from the ideator do

55

not affect crowd performance in product development.

In Model 2, we add the crowd member type variables. The control variables

are generally stable except for IdeaComments and AvgIdeaInfluence. The lack of

significance of AvgIdeaInfluence implies that when including the crowd members’

experience and composition, the crowd intelligence level or other experiences do not

matter much. In Model 2, we first observe that the type that saliently contributes to

product development performance is the omniscient one. The coefficient of

Omniscient is negatively significant (=-2.320, p<0.05). This is not that surprising

since members with high levels specialized experiences in many areas should be more

knowledgeable than others. Thus, a crowd with a higher proportion of such members

would perform better, which is consistent with the supportive evidence of diverse

experiences and specialized experiences. Consistently, deep generalists also have

positive effects on collective crowd performance (DeepGeneralist: =-1.383,

p<0.05). These findings suggest that H3c is supported. In addition, we note that in

Model 2, the type of T-shaped experience in other tasks is helpful for crowd

performance (=-2.937, p<0.01). Members of this type have relatively broad process

experience but do not have deep experience in the focal tasks. They also have very

limited domain experiences. However, they do have some experience in other task

areas. Such members may have stronger motivations to explore in the focal tasks and

their experiences in other tasks could help them in the focal task areas (Amabile

1983; Taylor and Greve 2006). H3b is supported. By calculating the average number

of tasks each cluster of members participates in product development campaign, we

find that members with T-shaped experiences in other tasks perform relatively fewer

tasks (i.e., more focused in the tasks) compared with generalists, suggesting a

stronger tendency for exploration (as opposed to exploitation). It seems that in

crowdsourced product development, crowdsourcers should not only attract highly

experienced participants but also those who are T-shaped in other tasks (i.e., those

with more room and stronger motivation to explore). This could be achieved by

56

increasing the relatedness of tasks across different task areas.

Interestingly, we do not find any other types to significantly affect collective

crowd performance in our main analysis. More generalists in the crowd do not affect

product development performance (Generalist: =0.214, ns), which is not entirely

consistent with the existing literature on generalists in the group context (e.g., Rulke

and Galaskiewicz 2000; Taylor and Greve 2006). H1 is thus not supported. One

possible reason may be the nature of limited communication among the crowd

participants in virtual communities. Generalists are able to facilitate knowledge

transfer and sharing within a group, but this benefit would only materialize if there is

vivid communication among the members, which is not the case in these loosely

organized crowds. On the other hand, new comers and triers may have more

incentives in exploring the tasks than generalist who have already experienced many

if not all of the task areas, while generalists need more time to develop deep expertise

and evolve into other (more experienced) types over time (Cahalane et al. 2014). It is

also worth noting that these generalists, according to our clustering results, do not

have rich experience in term of domain tasks, which may also affect their value

contributions to collective performance. This implies the importance of both deep

knowledge and domain knowledge. The coefficient of Trier is also not significant

(=-1.030, ns). Compared with new comers, although triers have a little more

experience in some tasks, their experiences are still limited and do not produce better

submissions.

57

Table 4-5. Main Regression Results

 DV: ln(Duration)

Variables Model 1 Model 2 Model 3 Model 4 Model 5

TinOther -2.937*** -2.598** -2.832*** -2.516**

 (1.087) (1.086) (1.049) (1.046)

Generalist 0.214 0.219 0.266 0.276

 (0.721) (0.689) (0.709) (0.680)

DeepGeneralist -1.383** -1.312** -1.414*** -1.333***

 (0.554) (0.522) (0.463) (0.442)

Omniscient -2.320** -2.019* -2.341** -2.038**

 (1.062) (1.049) (1.046) (1.039)

Trier -1.030 -1.077 -1.027 -1.073

 (1.340) (1.328) (1.235) (1.225)

ln(Members) -0.264*** -0.263*** -0.266***

 (0.0797) (0.0874) (0.0776)

ln(Submissions) -0.241*** -0.241***

 (0.0628) (0.0559)

NumProjects 0.125*** 0.103*** 0.120*** 0.103*** 0.120***

 (0.0356) (0.0352) (0.0348) (0.0319) (0.0323)

HasBrainstorm -0.0601 -0.0640 -0.0736 -0.0615 -0.0716

 (0.107) (0.101) (0.100) (0.111) (0.110)

InventorProducts -0.0137 -0.00838 -0.00736 -0.0116 -0.0102

 (0.0290) (0.0273) (0.0268) (0.0218) (0.0215)

ln(Comments) 0.147*** 0.134*** 0.129*** 0.132*** 0.127***

 (0.0418) (0.0381) (0.0376) (0.0371) (0.0367)

ln(AvgIdeaInfluence) -0.894* -0.455 -0.534 -0.468 -0.542

 (0.481) (0.461) (0.458) (0.383) (0.380)

ln(IdeaComments) 0.0986*** 0.0706** 0.0685** 0.120** 0.112**

 (0.0338) (0.0335) (0.0332) (0.0560) (0.0722)

ln(SimilarProducts) 0.366*** 0.375*** 0.373*** 0.462*** 1.006***

 (0.0728) (0.0763) (0.0740) (0.113) (0.111)

ln(Solution) 0.0383 0.0367 0.0310 0.0305 -0.0543

 (0.0254) (0.0273) (0.0267) (0.0277) (0.0274)

IMR 0.458 0.402

 (0.403) (0.402)

Constant 3.589*** 4.795*** 4.854*** 4.449*** 4.531***

 (0.487) (0.711) (0.630) (0.735) (0.677)

Observations 425 425 425 425 425

R-squared 0.416 0.451 0.460 0.456 0.464

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: IMR = Inverse Mills Ratio. Category and time dummies are included. Robust

standard errors in parentheses.

58

4.6.3 Supplemental Analysis

Alternative Control Variable

We conduct additional analysis to verify the main results and explore further insights

from these member types. We start with alternative measures in our empirical model.

First, in our main model, we control the size of crowd but not the total number of

contributions submitted. In Model 3 (Table 4-5), we use number of submissions

instead of number of participants as a control variable to clearly account for the

amount of crowd works (as the two variables cannot be included together given the

high correlation of 0.988, which is attributed to the design of submission mechanism).

The results in Model 3 are consistent. Second, although our operationalization of the

dependent variables through an aggregation approach helps to alleviate the potential

reverse effects of development duration on member experiences, such a measure of

performance may not be intuitive to capture the overall efforts devoted by Quirky.

Alternatively, we simply use the total duration from the first day of development to

the product launch date, the results remain consistent despite the potential reverse

causality issues. Third, instead of using the proportion of each cluster in the empirical

model, we alternatively use number of participants in each cluster as the independent

variables and the results are consistent.

Sample Selection

Another concern of our analysis is the sample selection issue. As we only focus on

the product development campaigns with crowd participation and completed design,

potential sample selection bias may exist in the analysis. Specifically, there are two

potential sources of potential sample selection bias – the selection of crowd

participation in the development (i.e., there are crowds in the product development)

and the selection of complete product development (i.e., with a full duration of

development). To address the selection issue, we specify a Heckman selection model

(Heckman 1979) for Model 2 and 3 using 708 products with complete information in

59

the first stage estimation (i.e., 425 out of 708 selected for the second stage in the

selection equation). To meet the identification of the selection model (i.e., exclusion

restriction) (Wooldridge 2010), we utilize the characteristics of the multiple-stage

crowdsourcing process and use variables from the ideation stage (i.e., the first stage

of business model) in the selection equation. Specifically, we incorporate the length

of overall product idea description in the ideation stage (Description) and the length

of the problem proposed by the ideators (Problem) as additional first stage variables

(which only affect selection). We also include inventor’s successful ideas

(InventorProduct), number of comments on the product idea (IdeaComments),

number of similar products submitted for the product idea (SimilarProducts) and

length of solution in the problem-solution paradigm (Solution). They are used in both

stages since they may affect both selection and outcome. Category and time8

dummies are also controlled in the first stage equation.

The results in Model 4 and 5 are shown to be robust to sample selection. The

inverse mills ratios (IMR) are not significant in the estimations and other variables

remain consistent after controlling the correction term. In addition, the selection

equation has substantial explanatory power (Pseudo R2 = 0.763), further confirming

the validity of our Heckman selection model specification (Certo et al. 2016). These

imply that the selection issue is not severe in our setting and the results are not

affected by the correction due to selection.

Alternative Experience Portfolio

We also conduct several supplemental analyses on the measures of experience

portfolios and member types. First, we consider a different specification for the

clustering analysis to identify the crowd member types. Instead of separating process

8 The time dummies controlled in the selection equation are the year of ideation (since the first

stage utilizes the multiple-stage nature of crowdsourcing process) instead of the year of

development used in the second stage equation.

60

and domain tasks for constructing the clustering metrics, we interact the process and

domain tasks to construct crowd members’ knowledge portfolio, which generates 40

fine-grained areas (5 process tasks × 8 domain tasks). Using the same set of metrics

(i.e., diverse experience, specialized experience and concentration of experience)

constructed by the new specification, we replicate the clustering analysis and

regression analysis. Interestingly, the derived clusters are quite similar with those in

Table 3 and the results are mostly consistent, as shown in Table 4-6. The results are

also consistent with the alternative control variable (Model 7) as well as with the

selection model (Model 8 and 9). We check the separate process and domain

experience of members in this new set of clusters and find the distributions are very

similar with the clusters in Table 4-3.

Second, in our main analysis, we construct each individual’s experience for

each product development campaign by the end of development (i.e., knowledge

accumulate at the product level). Alternatively, we relax this assumption by

measuring experiences at the project (or task) level; in other words, we assume that

experience culminates into useful knowledge when a sub-project is completed rather

than when the overall product development is completed. The results for both

clustering and regressions are consistent with our main analysis.

Third, we note that H2 and H3a could not be directly tested from the results

since the exact corresponding types did not emerge from the empirical data, even

though multiple ways of constructing experience portfolios have been considered. To

alleviate this concern, we conduct a theory-driven analysis and classify members into

different types simply by the mean of each metric (domain, process, or

domain×process-based) such that the resulting types fit the theoretical typology. The

regression results with this new specification confirmed our previous findings (the

effects of T-shaped in other task, deep generalist and omniscient members), but do

not lend support for H2 (generalist in focal task) and H3a (T-shaped in focal task).

Therefore, these two hypotheses do not receive support from our analysis.

61

Table 4-6. Regression Results using Interaction-based Clusters

 DV: ln(Duration)

Variables Model 6 Model 7 Model 8 Model 9

TinOther -2.057** -1.894** -2.157** -1.981**

 (0.908) (0.898) (0.856) (0.848)

Generalist 0.0673 0.369 0.325 0.606

 (0.928) (0.919) (0.873) (0.859)

DeepGeneralist -1.987** -1.985** -2.121*** -2.096***

 (0.791) (0.772) (0.739) (0.725)

Omniscient -2.759*** -2.384*** -2.835*** -2.446***

 (0.869) (0.842) (0.832) (0.820)

Trier -0.0819 -0.0580 0.126 0.120

 (1.774) (1.754) (1.458) (1.445)

ln(Members) -0.370*** -0.375***

 (0.0843) (0.0721)

ln(Submissions) -0.310*** -0.311***

 (0.0593) (0.0519)

NumProjects 0.111*** 0.129*** 0.111*** 0.129***

 (0.0350) (0.0345) (0.0318) (0.0321)

HasBrainstorm -0.0517 -0.0606 -0.0463 -0.0560

 (0.102) (0.100) (0.113) (0.112)

InventorProducts -0.0100 -0.00789 -0.0142 -0.0116

 (0.0267) (0.0260) (0.0223) (0.0219)

ln(Comments) 0.126*** 0.121*** 0.124*** 0.118***

 (0.0386) (0.0378) (0.0372) (0.0368)

ln(AvgIdeaInfluence) -0.462 -0.514 -0.468 -0.516

 (0.463) (0.459) (0.380) (0.377)

ln(IdeaComments) 0.0663** 0.0645* 0.137** 0.518***

 (0.0336) (0.0331) (0.0575) (0.0722)

ln(SimilarProducts) 0.419*** 0.406*** 0.541*** 0.515***

 (0.0778) (0.0756) (0.115) (0.112)

ln(Solution) 0.0365 0.0314 0.0282 -0.0543

 (0.0288) (0.0281) (0.0292) (0.0287)

IMR 0.643 0.576

 (0.400) (0.400)

Constant 5.466*** 5.326*** 4.982*** 4.870***

 (0.683) (0.599) (0.714) (0.661)

Observations 425 425 425 425

R-squared 0.448 0.459 0.456 0.466

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: IMR = Inverse Mills Ratio. Category and time dummies are included.

Robust standard errors in parentheses.

62

Uncertainty of Clusters

Although we use cluster analysis to empirically explore member types in the data,

there may be uncertainties from the clusters since the algorithm only maximizes the

differences between clusters instead of perfectly capturing unique groups. To resolve

this uncertainty, we first incorporate a control variable that captures the variances of

clusters from the cluster analysis. The main results are consistent after controlling the

variances. Furthermore, we consider a group average approach without clustering

member types. This can also help to verify our arguments on the role of diverse

experience, specialized experience and experience concentration. We calculate the

experience metrics (diversity, specialization and concentration for domain, process or

domain×process-based) at the group level by averaging individual experiences across

group members. The results suggest that specialization plays an essential role but

diversity and concentration do not. This is consistent with our insights from member

clusters.

Moderation and Interaction Effects

Our research questions and main analyses mainly focus on the overall effects of

different crowd members on product development outcome. However, there might be

potential heterogeneity and interactions within these effects. Specifically, we consider

two aspects – the role of crowd size (i.e., number of members) in moderating these

effects, and the interaction effects between different member types. Empirically, we

first use the size of crowd to interact with each crowd composition variable. The

results suggest that only the proportion of generalist is significantly moderated by

crowd size – when the size of crowd is larger, generalists tend to be more helpful to

collective performance product development process (i.e., a negative interaction

effect between Generalist and Members). The increased size of crowd requires more

members with diverse experience to facilitate the flow of information and expertise,

which is less likely to be necessary for smaller crowds. In larger crowds, generalists

63

are able to transfer knowledge and offer available knowledge base for better

knowledge contributions and collective performance. In addition, we conduct

interaction analysis between different types of participants in the crowd – the results

imply that most interactions between member types are not significant except the

substitution effect between generalists and deep generalists (i.e., a positive interaction

effect between Generalist and DeepGeneralist). The effects of generalist and deep

generalist tend to be weaker there are more of the other type, implying certain

overlaps between them in terms of their roles in the crowd. When there are more

generalist to transfer knowledge and afford knowledge diversity, the influence of

deep generalist is weaker as their roles have been partially achieved by generalists.

Predicting Development Success

Although the focus of our analysis is on the performance of the crowd reflected in the

duration of product development, this measure mainly captures the efficiency of

product development for the firm instead of the actual value of the product. To

explore how crowd participants affect the effectiveness of the developed product, in

Table 4-7, we predict the success of development measured by whether a product was

selected into production (Production) by Quirky (Bayus 2013).9 As this is a binary

variable, we use logistical regression for product effectiveness and include the same

independent variables in our main analysis.

9 Although the selection of a product into production may suggest the success of development,

whether a product can go into the production stage can be decided by various factors such the

actual manufacturer, materials and production cost, which is quite different from the “on paper”

development process. In addition, the selection for production does not fully imply the success

of the product. According to our observations and media articles about the platform, some of

the products only achieved very limited sales even though production costs were high.

Therefore, we only include the analysis with this dependent variable as an extension of our main

analysis.

64

Table 4-7. Predicting Product Development Success using Clusters

 DV: Production

Variables Model 10 Model 11 Model 12 Model 13

TinOther -1.505 -2.055 -1.686 -2.172

 (3.772) (3.841) (3.788) (3.852)

Generalist 0.980 -0.393 0.982 -0.413

 (2.219) (2.150) (2.218) (2.153)

DeepGeneralist 4.658*** 3.544** 4.811*** 3.629**

 (1.660) (1.550) (1.667) (1.559)

Omniscient 5.442 4.050 5.668* 4.195

 (3.339) (3.255) (3.331) (3.253)

Trier 4.720 4.737 4.843 4.816

 (4.025) (4.065) (4.025) (4.067)

ln(Members) 1.571*** 1.591***

 (0.281) (0.284)

ln(Submissions) 1.145*** 1.151***

 (0.204) (0.205)

NumProjects -0.00155 -0.0345 0.000736 -0.0325

 (0.104) (0.105) (0.105) (0.105)

HasBrainstorm 0.301 0.358 0.303 0.360

 (0.409) (0.406) (0.412) (0.408)

InventorProducts 0.0485 0.0463 0.0559 0.0512

 (0.0731) (0.0721) (0.0737) (0.0728)

ln(Comments) -0.231* -0.202 -0.231* -0.202

 (0.132) (0.131) (0.133) (0.132)

ln(AvgIdeaInfluence) -1.047 -1.031 -1.040 -1.034

 (1.320) (1.338) (1.325) (1.341)

ln(IdeaComments) -0.225** -0.229** -0.360 -0.320

 (0.104) (0.102) (0.229) (0.232)

ln(SimilarProducts) -0.143 -0.0579 -0.392 -0.222

 (0.254) (0.252) (0.457) (0.459)

ln(Solution) -0.000867 0.0275 0.0246 0.0441

 (0.0819) (0.0826) (0.0882) (0.0880)

IMR -1.284 -0.853

 (1.943) (1.947)

Constant -9.334*** -7.535*** -8.339*** -6.824**

 (2.299) (2.021) (2.838) (2.688)

Observations 425 425 425 425

Pseudo R2 0.168 0.169 0.169 0.169

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: IMR = Inverse Mills Ratio. Category and time dummies are included.

Robust standard errors in parentheses

65

The results suggest that only incorporating more deep generalists can increase

the potential of developed products to go into production. Omniscient members (as

well as T-shaped in other task), although they can facilitate the development process,

cannot guarantee the final value of the product as perceived by the company.

Members with very high level of knowledge depth may be bounded with their

existing knowledge portfolio and be less likely to create novel solutions. Using the

number of submissions as an alternative control variable (Model 11) and the

Heckman selection model specification (Model 12 and 13) shows similar results.

These findings suggest that crowd members may have differential effects on the

development process (efficiency) and on the product value (effectiveness). Extremely

deep experiences from omniscient members may help to improve the overall

performance of crowd and development efficiency, but are not able to increase the

possibility of creating substantially novel contributions in the crowd (i.e., creativity

might be constrained).

4.7 Conclusions

In this study, we empirically investigate the role of member types in a crowdsourced

new product development context. We develop a typology and corresponding

hypotheses for the types of crowd members based on the diversity literature and the

theoretical framework of generalists and specialists. With data on new product

development at Quirky.com, we empirically identified six types of crowd members.

Our empirical results showed that in addition to omniscient members and deep

generalists, members with T-shaped experiences in other task areas may also benefit

the crowd performance in terms of reducing the crowdsourced product development

duration. Interestingly, generalists were found not to be very valuable, especially for

smaller crowds.

4.7.1 Theoretical Contributions

Our study contributes to several aspects of theory and literature. First, this study

66

contributes to the literature on crowdsourcing and open innovation. As an important

partner for open innovation to organizations, the value of the crowd has been

recognized, but a large body of the crowdsourcing and innovation literatures focuses

primarily on collection of ideas, such as crowdsourcing contest and idea generation,

and examining the motivations, antecedents and consequences (Boudreau et al. 2011;

Hou et al. 2011; Yang et al. 2010; Yang et al. 2009). However, as an emergent form

of organizing crowdsourcing, the collaboration approach and crowd co-creation are

still understudied (Pedersen et al. 2013). These new forms of crowdsourcing have led

to new business models for open innovation and innovation community and have

enabled new ways of organizing the crowd to create tangible new products. Our study

examines such a new form of organizing crowdsourcing and empirically identifies the

important drivers of success in crowdsourced new product development. The

collaborative crowdsourcing process makes use of the interdependence among tasks

and participants to harness collective intelligence. The concept of crowd-creation and

collective intelligence have attracted much attention in crowd-based contexts (e.g.,

crowdsourcing and crowdfunding) (Avital et al. 2014; Nickerson et al. 2014). Our

study serves as one of the initial empirical works examining the key components in

crowd-creation and unpacks the value co-creation process in innovation communities.

Second, our study contributes to the literature on online innovation

communities. We identified the important types of crowd members in a

crowdsourcing community where community members work in both collective and

collaborative manner. We find that generalists do not improve crowd co-creation

works in a large virtual group (crowd) context possibly due to limited needs for (or

natural occurrence of) information transfer and communication. Members with T-

shaped experience in non-focal tasks were actually found to facilitate the product co-

design / co-creation process in crowdsourced new product development. These

findings provide further insights related to the impact of innovation community on

value co-creation (Antorini et al. 2012). We suggest that when using open innovation

67

community for value co-creation, it is important to attract experienced members and

facilitate communication to increase the values of other participants. In addition, a

larger size of the crowd in the community would be preferred for value co-creation.

Third, we contribute to the theoretical perspective on generalists and

specialists, and extend the diversity literature to large and dispersed online groups. In

traditional group work such as software development, T-shaped experience

distributions with specialized experiences in the focal knowledge domain is typically

preferred (Kang et al. 2012; Narayanan et al. 2009). Furthermore, groups composed

of generalists was also shown to exhibit better performance (Rulke and Galaskiewicz

2000). However, in our context, generalists were not found to be a particularly

beneficial type (only partially effective in large crowds). When a generalist reaches

the limit of knowledge areas, she may have a weaker motivation to improve

performance and needs more time to further explore the depth of her knowledge

portfolio to evolve into a more experienced type. Meanwhile, the lack of domain

knowledge may make generalists less influential. Furthermore, limited

communication may also lead to unexpected implications. In the diversity literature,

communication and coordination cost are discussed for large groups but there is a

lack of empirical examination (Taylor and Greve 2006). We extend the theory about

diversity in large and loose online groups and find that diversity may only have

limited influence for innovation and creativity in the absence of knowledge depth. In

addition, a T-shaped member in other tasks may be an important type in online

crowdsourced groups. Specialized experience may have the potential to transfer from

other areas to the focal area when diverse experience is sufficient for such a transfer.

Such a potential of transfer is in line with stronger motivation of exploration, which

could induce better collective performance in innovation. Finally, our results show

that only diverse experience may not work in our context. Only with specialized

experiences in various task areas could members collectively produce better

performance, which is consistent with Hwang et al. (2014) in the context of

68

individual idea innovation. However, highly specialized experience may only be

helpful for the efficiency of innovation process but not for potential product

effectiveness.

4.7.2 Practical Implications

In terms of practical implications, we empirically uncover the collaboration and

crowd co-creation process in crowdsourcing and open innovation community. Firms

which frequently crowdsource works to community members or seek crowd co-

creation from a community should attract more experienced members in both diverse

knowledge and specialized knowledge by increasing the variety and specificity of

crowdsourcing tasks. Community members with only diverse experiences may not be

very useful. Firms also need to pay attention to those who have T-shaped knowledge

in other areas by designing tasks with high relatedness and interactions along with a

more flexible crowd co-creation process. Second, by attracting more experienced

members and the right type of members, firms could also spend less effort in

assimilating the crowdsourced works because of better crowd performance. Third, it

may be important for the designer of crowdsourcing tasks to understand the members’

balance between task exploration and specialization in crowdsourcing to guarantee

the innovativeness and engagement of members.

4.7.3 Limitations

Our study has several limitations that require further investigations. First, our

empirical results suggest that participants tend to explore different types of tasks

broadly to accumulate experience. It would be meaningful to further examine this

exploration process for diversity to get deeper understanding of community

participation. Second, the analysis of participation patterns of community members

generated six clusters from the empirical data, which did not perfectly fit the

theoretical typology. Future research may attempt to comprehensively investigate this

typology in different contexts to enrich our knowledge of crowd participants. Third,

69

we mainly focus on the group level crowd performance and firm-level

efficiency/effectiveness. Future research can also test individual level performance

and compare individual level contribution quality with group level innovation

outcomes. Lastly, although our study takes the initial step on how to organize

community members in value co-creation, our results suggest the room of further

examination on factors affecting crowd-creation process, such as member interaction

and product complexity.

70

CHAPTER 5 ESSAY II – CAN I TOUCH YOUR CODE? THE

EFFECTS OF PROGRAMMING STYLE ON OPEN SOURCE

COLLABORATION

5.1 Abstract

Open source software (OSS) development has recently garnered much attention from

both industry practitioners and academic researchers. However, existing research on

OSS usually focus on the role of behavioral factors in affecting collaboration

outcomes but has neglected to critically consider the nature of the artifact (i.e., the

software) itself. In this study, we seek to integrate collaboration factors and software

factors in extending our understanding of OSS collaboration. Specifically, we

investigate the role of programming style in open source collaboration, where strict

guidelines for coding are typically not enforced. We develop three implications of

programming style on contributor participation, development efficiency and OSS

diffusion from a diversity perspective. Additionally, two team level factors (i.e., team

familiarity and developer experience) that moderate the negative effects of

programming style are discussed. We also examine how project teams can effectively

control coding styles for collaboration. With a list of metrics identified from the

literature and industrial standards, we quantify programming style for both within file

inconsistency and across file consistency. The empirical analysis suggests that style

inconsistency can exhibit negative effects, but mainly through within file

inconsistency, and on contribution activities. We also find that team familiarity can

alleviate the negative effects, but developer experience unexpectedly intensifies them.

In addition, the practice of project control through coding standards is found to only

reduce within file inconsistency. Our study contributes to the literature on OSS

development, software engineering and diversity in distributed work groups, and

offers practical insights for open source software teams.

71

5.2 Introduction

Open source software (OSS) development has witnessed much popularity and growth

in recent years (Hahn et al. 2008; von Krogh and von Hippel 2006). The open source

production model transforms software development process from a proprietary

development mechanism into an open collaboration model where developers from

anywhere in the world are able to collaborate with each other and create new software

products (Fitzgerald 2006).

In the OSS collaboration model, developers from diverse backgrounds and

with different knowledge are able to contribute and collaborate in the development of

software. However, it is commonly acknowledged that every developer exhibits

unique characteristics in writing computer programs (Graham 2004; Reiss 2007).

Such personal characteristics, if not reconciled, may be harmful for collaboration,

which is similar to the situation where two authors with different writing styles have

difficulties in effectively collaborating on co-authoring an article. This may not be an

issue with proprietary software development in traditional organizations as

organizations typically enforce strict and detailed coding guidelines (Shah 2006). But

this may not be the case with OSS. Without monetary rewards, open source

developers work for free (Hars and Ou 2002), and their primary motivations are

enjoyment, learning, reputation and code sharing (Roberts et al. 2006; Sheoran et al.

2014). Such self-organized new organizational forms usually cannot impose specific

rules for developers so that individual characteristics can easily get embedded in their

code contributions (Crowston et al. 2007). These personal preferences in code writing

may make it difficult for team members to understand others’ contributions and also

undermine subsequent collaboration and development efforts. However, the existing

literature on OSS development generally focuses on the behavioral factors on

collaboration without much attention paid to the characteristics of the source code. As

the core of the software product, the source code is the conduit for developers to

72

understand the task, conduct maintenance and promote the software (Mohan and Gold

2004). Its importance is even further intensified by the transparency of source code on

today’s social coding platforms (Dabbish et al. 2012).

According to the literature on programming languages, one of the most

intuitive and visible individual characteristics in code writing is programming (or

coding) style (Arabyarmohamady et al. 2012; Caliskan-Islam et al. 2015).

Programming style goes beyond the grammar of the programming language and also

captures stylistic elements (Caliskan-Islam et al. 2015). A poor coding style usually

impedes the effective comprehension of the source code, which is an important

precursor to software team collaboration and software maintenance (Buse and

Weimer 2010). In addition, developers receive different training in programming

which cultivates their own preferences in writing code (Soloway and Ehrlich 1984).

They usually develop a strong sense about what the code should look like and find it

difficult to comprehend source code written with different styles (Spinellis 2011).

Although style guides in different languages have been developed and organizations

(including some large OSS projects) have enacted guidelines for development, it is

not common practice for OSS projects to enforce programming style requirements in

the collaboration process. Therefore, different programming styles may coexist within

a project’s source code. The objective of this study is to explore the implications of

different programming styles in the source code on open source collaboration.

Several reasons highlight the importance of understanding the role of

programming style in OSS development. First, in open source collaboration, which is

characterized by free style collaboration, it is important for project teams to alleviate

the potential consequences of programming style if poor coding style can hamper

collaboration efficiency. Second, team members not only directly interact with each

other, but also indirectly through the software product itself (which may actually be

the preferred approach). Understanding the role of software itself in the collaboration

process can advance our knowledge on deeper level collaboration mechanisms in

73

OSS development. Third, analyzing the styles (as well as other metrics) in source

code can reveal how developers contribute to open source projects from a more

nuanced perspective, and help to facilitate the sustained development of the open

source ecosystem. Therefore, exploring the implications of programming style can be

useful for understanding the deeper level collaboration process and the development

of community in open source context.

To understand the implications of programming style both theoretically and

empirically, we first conceptualize differences in programming styles in the source

code as “separation” from the diversity literature. Anchoring on this theoretical

perspective and the software engineering literature, we first develop the core

hypotheses on the overall implications of programming style on collaboration,

development and diffusion of OSS. Two mechanisms from the source code and group

cognition are discussed to develop the hypotheses. Then we explore the possible team

level factors and strategies that can help to alleviate the challenges of different

programming styles – the role of network connections in the team, developers’

experience and project control (i.e., coding standard).

We test these hypotheses using data and source code collected from GitHub.

We quantify differences in programming styles by the inconsistency of programming

style within and across code files using large-scale static code analysis. Through

econometric models at the project month level, we find that style inconsistency

exhibits negative effects mostly through within file inconsistency and on contribution

activities (so no clear effects on other collaboration indicators). The negative effects

can be alleviated by team familiarity but unexpectedly intensified by developer

experiences. In addition, by utilizing a quasi-experiment setting of enacting coding

standards, we find that project control is effective for decreasing within file

inconsistency but not for across file inconsistency. Our study contributes to the

literature on OSS development by highlighting the importance of the software artifact

in open collaboration and the interaction between software factors and behavioral

74

factors. We also provide insights for software engineering research on the role of

programming style, and group diversity literature in terms of work style diversity and

different opinions (i.e., separation) towards the product. OSS teams can benefit from

our study on managing programming style in the code repository and leverage team

governance mechanisms together to achieve higher collaboration efficiency.

5.3 Literature Review

5.3.1 Open Source Collaboration

Researchers in OSS development area have investigated various aspects in this

emergent collaboration model. Examined topics include the developer’s social

network (Hahn et al. 2008; Oh and Jeon 2007; Singh 2010; Singh and Phelps 2013),

team structure (Daniel et al. 2013; Grewal et al. 2006; Singh and Tan 2010; Singh et

al. 2011), individual motivation and learning (Ke and Zhang 2009; Roberts et al.

2006; Singh et al. 2010; Zhang et al. 2013) and the value of the OSS model (August

et al. 2013; Boudreau 2010; Zhu and Zhou 2011). In summary, from the developer

perspective, OSS developers are shown to form project teams and choose project

licenses based on their network connections. They learn by contributing to projects

and extending the source code. From the project perspective, social capital, network

position and team structure have been shown to affect the technical and commercial

success of OSS projects. From a broader perspective, researchers compared the OSS

model with the proprietary development model, and investigated the OSS ecosystem

(Haefliger et al. 2007; Levine and Prietula 2013).

However, the extant literature has yet to delve into the nature of the software

product itself when examining project collaboration and performance. It has been

documented in the software engineering literature that the examination of source code

and software metrics is an important aspect in understanding software outcomes

(Capiluppi et al. 2009). In this study, we seek to fill this gap by integrating behavioral

factors and software factors in understanding open collaboration.

75

5.3.2 Programming Style

Programming style describes a developer’s preferences in writing source code and

efforts to make source code easy to understand (Kernighan and Plauger 1978).

Existing studies have employed the stylistic traits of source code in various contexts

including programming education (Moghadam et al. 2015; Ohno 2013), plagiarism

detection (Arabyarmohamady et al. 2012), program authorship identification

(Caliskan-Islam et al. 2015), and software engineering (Lee et al. 2013b; Smit et al.

2011b). This study draws upon the software engineering area relating to source code

comprehension and software maintenance (Binkley et al. 2013; Mi et al. 2016; Miara

et al. 1983).

Research in software engineering has highlighted the importance of

programming style (Prause and Jarke 2015; Reed 2010). Specifically, a series of

studies have documented the linkage between coding style and important software

metrics (e.g., readability, maintainability and quality). Good programming style

increases readability and understandability of the code, facilitating code

comprehension (Lee et al. 2013b; Oman and Cook 1988). Source codes with better

(consistent) style are also easier to maintain in the long run (Buse and Weimer 2010;

Prause and Jarke 2015). In addition to comprehension and maintainability,

programming style is also related to software quality (Capiluppi et al. 2009; Smit et

al. 2011b). However, Boogerd and Moonen (2008) claimed that not all the

programming style standards are helpful in reducing software faults. Smit et al.

(2011a) also evaluated coding style conventions and found that not all the

conventions are equally important according to software engineers. Moreover, some

studies in software engineering attempt to quantify programming style by tracing the

fingerprint of developers (Caliskan-Islam et al. 2015; Frantzeskou et al. 2006; Mi et

al. 2016; Mohan and Gold 2004).

76

Although existing works have examined programming style, their focus has

usually been on the impact on software itself instead of the collaboration process.

However, due to the possible implications on collaborative software development

processes, especially given the voluntary contribution nature of OSS, we focus our

attention on the role of programming style in open collaboration.

5.4 Hypotheses Development

Given the concerns of programming style in the open source community, we develop

hypotheses about the impact of different programming styles on open source

collaboration. We first intend to examine how programming styles can affect open

source collaboration. Drawing on the theory of diversity, more specifically diversity

as separation (Harrison and Klein 2007), we discuss three implications of

programming style on open source collaboration and development. Specifically, there

are two mechanisms to explain the effects of programming style, from the software

engineering perspective and from the diversity as separation perspective, which we

term as the material mechanism and the cognitive mechanism, respectively. The

material mechanism comes from the software development process where

inconsistent programming styles increase the efforts in software comprehension and

maintenance. The cognitive mechanism occurs with cognitive conflicts in terms of

work styles across developers when different styles co-exist, which subsequently

decreases the intention to collaborate and contribute. Then, we explore how to

alleviate the challenges arising from inconsistent programming styles in OSS

development by proposing hypotheses on the role of team familiarity, developer

experience and project control in shaping the impact of programming style. In these

hypotheses, project control serves as an antecedent of programing style, while the

other two are proposed to moderate the effects of programming style by mitigating

the cognitive mechanism and the material mechanism, respectively. Figure 5-1 shows

the basic framework of this study.

77

Figure 5-1. A Brief Research Framework

5.4.1 The Effects on Contributors

Contributors are important actors in the OSS community. It is necessary for open

source projects to keep attracting developers to sustain development (Fang and

Neufeld 2009). Existing studies have examined the roles of various behavioral factors

in developer’s participation and contribution (Grewal et al. 2006; Hahn et al. 2008;

Singh et al. 2011). Here, we claim that the nature of the source code will also affect

the participation and contribution process. Drawing on the OSS literature, we discuss

the role of programming style in both potential contributors’ and existing

contributors’ participation.

In open source communities, a developer who wants to contribute to a project

not only considers the social or behavioral factors but also needs to evaluate the

project based on its functionality, maturity or scale (Hahn et al. 2008). One of the

most important tasks during the evaluation is to understand the source code so that the

developer is able to modify the code for contribution (Prause and Jarke 2015). If the

current project has inconsistent programming styles (due to the contributions of

multiple developers with different styles), this implies divergence in developers’

opinions about how the software should be coded (i.e., how to write the source code

to implement functions) and there are no clear norms within the project team (Bechky

2003). Developers in the team keep their personal opinions about what the source

78

code should look like and there are no rules to regulate any conflicts. Thus,

inconsistent programming style not only makes it difficult for potential contributors

to understand the source code but also signals a potential lack of conflict resolution in

the project team (Kankanhalli et al. 2006), which creates barriers to entry and may

reduce intentions to participate and contribute. Conversely, a consistent programming

style in the source code facilitates software comprehension and thereby lowers the

barriers for new contributors to participate. Hence, we propose:

Hypothesis 1a: Programming style inconsistency is negatively associated with the

number of new contributors in open source projects.

To collaborate on a project, existing members also need to comprehend the

evolving source code. Source code with diverse coding styles will be more difficult to

understand and impede subsequent contributions (Prause and Jarke 2015). In addition,

team members may feel uncomfortable when there is strong individualism or

cognitive separation within the team (Earley and Mosakowski 2000). If developers

insist on keeping their own style preferences when writing code, there could be

salient cognitive conflicts in the collaboration process. The literature on diversity

suggests such conflicts can lead to social categorization and undermine group

integration (Schneider et al. 1995). Developers not only face heavier load on code

comprehension and maintenance, but also have less intentions to collaborate. Thus,

developers will be less like to be engaged in the collaboration and become less active

due to the inconsistent programming styles in the source code. We propose:

Hypothesis 1b: Programming style inconsistency is negatively associated with the

activeness of existing contributors in open source projects.

5.4.2 The Effects on Development Process

Another important aspect of OSS collaboration is the software development process.

Research in OSS has investigated various indicators for the success of software

development, such as commits and downloads. However, these indicators mainly

capture the engagement of community and end user interest rather than the process of

79

software development and enhancements. In the present study, we focus on the

release of open source software, a repeated activity in the development life cycle

(Lerner and Tirole 2002). To make a software release, the project team needs to make

the software both technically and functionally acceptable to the community (Godfrey

and Tu 2000; Lakhani and Von Hippel 2003). Thus, the event of release captures the

success of the development process (Mallapragada et al. 2012).

It has been documented in the software engineering literature that

programming style is an important element for software quality and maintainability

(Capiluppi et al. 2009; Smit et al. 2011b). Therefore, poor programming style implies

that software may encounter issues and difficulties in testing and maintenance. This

will lead to more fixing works and more time to create new features, resulting in a

delayed release. In addition, when there are multiple styles in the source code, it may

take the project team a longer time to unify the individual ‘fingerprint’ in the software

and integrate the resources for a release (van Knippenberg and van Ginkel 2010). It

requires the project team to reconcile the dissimilarities in contribution style to ensure

a maintainable version of the software. Conversely, a consistent programming style

will make it easier for the team to fix bugs and incorporate new features (Mohan and

Gold 2004). Different programming styles, as exhibited by diversified work styles,

can lead to greater cognitive conflicts and lowered productivity (van Knippenberg

and Schippers 2007), which also increases the time to achieve important milestones

such as the software release. Taken together, we hypothesize:

Hypothesis 2: Programming style inconsistency is negatively associated with the

release of open source projects.

5.4.3 The Effects on Project Diffusion

Open source project diffusion refers to the attention of the project in the broader

developer community and the reuse of source code by other developers (Zhang et al.

2014). The diffusion of projects is important for further collaboration and

sustainability of the open source community (Zhang et al. 2014) and thus it is a key

80

aspect of the OSS ecosystem. For example, on GitHub, developers can fork or watch

other projects for knowledge improvement and/or further extension (Dabbish et al.

2012; Sheoran et al. 2014).

Prior research has suggested that open source developers pay attention to

projects because of contribution and code sharing (Kalliamvakou et al. 2014a).

Projects mainly receive attention from those developers who have the intention to

contribute due to interest in the source code. These developers are potential

contributors and modifiers as well as issue reporters for new releases (Sheoran et al.

2014; Zhang et al. 2013). Thus, garnering more attention from external developers is

beneficial for project collaboration and sustained improvements. However,

inconsistency in programming style will lead to more efforts in code comprehension

and imply conflicts within the team. For external developers, it is difficult to clearly

understand the source code in such project repositories (with different coding styles)

and track the evolution of the software development (Blincoe and Damian 2015).

Thus, external developers would perceive less potential for further usage and

contribution, which in turn reduces the attention received by such projects. In a

similar vein, the low maintainability and different code writing opinions as a result of

inconsistent programming style will make the source code less readable and reusable.

The diversity literature suggests that it is difficult to integrate and organize resources

in groups with high separation (He et al. 2007), which impedes team functioning and

further progress (Harrison et al. 2002). Compared with projects without style control,

projects with clear and consistent programming style are more likely to be followed

by developers in the community for further opportunities and be re-developed by

external community members. Taken together, we propose the following hypotheses

about project diffusion:

Hypothesis 3a: Programming style inconsistency is negatively associated with

external attention of open source projects.

81

Hypothesis 3b: Programming style inconsistency is negatively associated with the

extent of code reuse of open source projects.

5.4.4 The Moderating Role of Team Familiarity

We now focus on the characteristics of the project team that may help to resolve the

issues arising from programming style inconsistency. These factors usually relate to

within team collaboration and development processes instead of to new contributors

and project diffusion which are more pertinent to developers in the whole open source

ecosystem external to the focal OSS project. Thus, our hypotheses will be developed

on the basis of collaboration and development aspects discussed above.

We first examine the role of team member familiarity in open source

collaboration. Team members who have prior connections with each other are more

likely to collaborate with each other (Hahn et al. 2008) and resolve the conflicts in the

group (Cannella et al. 2008). Given the two mechanisms of inconsistent programming

style (material- and cognition-based), the cognitive process may be curtailed when

team members are more familiar with each other. Although the inconsistency of style

in source code can lead to greater efforts in comprehension and maintenance, the

intention to collaborate and contribute is less likely to be decreased when team

members know each other very well. Thus, the negative effects of programming style

inconsistency on activeness of developers should be weaker in projects where

members are familiar with one another. Similarly, even though developers still need

to exert great efforts for maintenance to release the project given different

programming styles, the cognitive process will not be affected if team members are

familiar with each other. They are more likely to trust other developers in the

collaboration and tolerate the different style of others if they know each other well.

This suggests that the negative effect of inconsistent style on project release can be

weaker with greater team familiarity.

In open source communities or other innovation/collaboration communities,

two types of connections are typically documented – collaboration ties and friendship

82

ties (Hahn et al. 2008; Moqri et al. 2015; Oh et al. 2015). Collaboration ties refer to

the collaboration experiences among project members in other projects, while

friendship ties capture the extent to which team members know each other. Both of

them suggest the familiarity among team members (Huckman et al. 2009) so that they

are able to resolve the concern of inconsistent coding style by mitigating the cognitive

process of separation. Thus, we propose the following hypotheses:

Hypothesis 4a: The negative relationship between programming style inconsistency

and the activeness of developers is moderated by the familiarity of

team members such that the negative effect is weaker when team

familiarity is greater.

Hypothesis 4b: The negative relationship between programming style inconsistency

and the speed of project release is moderated by the familiarity of

team members such that the negative effect is weaker when team

familiarity is greater.

5.4.5 The Moderating Role of Developer Experience

Another important team characteristic is the overall experience of developers in the

project team. Developers accumulate their experiences and expertise in writing code

by contributing to other projects or working on their own projects. Their experiences

not only help them to write clearer source code but also facilitate their ability to

comprehend code (Evangelist 1984). Given their expertise, experienced developers

are less likely to be affected by inconsistent programming styles in the source code

when working on program comprehension and software maintenance (Binkley et al.

2013; Miara et al. 1983; Woodfield et al. 1981). This implies that the material

mechanism through code comprehension and software maintenance should not be as

salient when developers in the team are experienced. Style inconsistency, therefore,

would not affect their comprehension of the source code and they can still work on

the code without incurring too much extra effort. Thus, the activeness of experienced

developers in the team is less likely to be affected by style inconsistency. Similarly,

experienced developers can efficiently work on the source code with inconsistent

83

styles for project release. Their experiences help them comprehend the source code

and fix the issues efficiently. They are more likely to make progress toward releasing

projects regardless of the inconsistent programming style. This leads to the

moderating effect on the relationship between style inconsistency and project release.

Hence, we propose:

Hypothesis 5a: The negative relationship between programming style inconsistency

and the activeness of developers is moderated by the experience of

team members such that the negative effect is weaker when developer

experience is greater.

Hypothesis 5b: The negative relationship between programming style inconsistency

and the speed of project release is moderated by the experiences of

team members such that the negative effect is weaker when developer

experience is greater.

5.4.6 Project Control as Antecedent of Programming Style Inconsistency

Our previous discussions have focused on the consequences of inconsistent

programming style. However, besides weakening the effects of programming style

through team formation, it is also important for project teams to reduce the style

inconsistency more directly. This usually can be attempted by strict project control,

which is similar to what proprietary software development organizations do. The

common practice for such strict project control is to enact a style guide or coding

standards to team members so that team members can follow the guidelines to avoid

style inconsistency. Thus, we regard project control (i.e., the use of coding standards)

as an antecedent of programming style consistency in the project.

With the enactment of a coding standard, project team members will be

aware of the requirements of programming style used in the project. Contributions

that deviate from the coding standard may be rejected or further revised by the project

owner (or core developers), and members will try to maintain the norms built in the

project (Li et al. 2016). Strict project control implies efforts toward stability in

collaboration among diverse individuals and forms routines in code writing for

84

developers to follow. In their subsequent contributions, developers would be more

careful about the style they use in the source code and try to adhere to the guidelines.

They would also attempt to adjust the existing coding styles in the project and then

make it more consistent based on the enacted coding standard. Thus, we argue that

there will be two influences of project control practices on programming style

inconsistency. First, there is a short-term effect where the style inconsistency

decreases after the implementation of coding standards. This is because developers

may adjust the style in the existing source code to the required style and project

members may also have the intention to reduce style inconsistency in the existing

code after the release of coding standard. Second, there is also a longer-term effect on

the subsequent contributions to the projects. The extent of programming style

inconsistency will be lower in the time periods after the release of the coding

standards compared with projects lacking a coding standard. Taking these together,

we propose the following hypotheses:

Hypothesis 6a: Project control is negatively associated with style inconsistency in

short term.

Hypothesis 6b: Project control is negatively associated with style inconsistency in

long term.

5.5 Research Context and Data Collection

Our research context is open source software projects on GitHub, the largest platform

for OSS development in the world. It builds on Git – a distributed version control

system – to enable source code sharing and collaboration. As of June 2018, GitHub

has over 28 million users and 57 million repositories (i.e., projects). In addition to

codebase storage and source code sharing, GitHub provides a series of features to

facilitate team collaboration, project management and social interaction (Choi et al.

2013; Yu et al. 2014). It not only supports team-based software development but also

enables external developers to contribute and collaborate (Gousios et al. 2014).

85

On GitHub, the source codes of all public repositories are publicly accessible.

Similarly, all activities including commits, code reviews and discussions are also

publicly available. Such transparency enables a social coding process and developers

can easily evaluate the quality of project by checking the source code and other

information directly on the platform (Dabbish et al. 2012; Lee et al. 2013a).

Therefore, in such an open and transparent environment, how the source code looks

may be critical for projects and programming style is one of the most salient elements

exposed to community members. This research site allows us to investigate the

coding style of publicly visible source code and its implications on OSS

collaboration.

We construct our dataset from GitHubArchive and GHTorrent (Gousios

2013). These two datasets provide a large amount of metadata from GitHub starting

from 2012. They log all events including commits, issues, pull requests, releases and

social interactions on all publicly accessible repositories. This enables us to track all

activities and the source code of all versions across the software development life

cycle. In addition to the metadata, we also extract detailed commit-level and file-level

data directly from GitHub using the GitHub API (Kalliamvakou et al. 2014b). Among

all the projects in our dataset (over 12 million non-forked projects), we limit our

scope to projects using the JavaScript programming language which were initiated

after 201210 as the base project pool (over 2.22 million projects). Several reasons

guide this selection. First, JavaScript is the most popular language on GitHub,

offering a greater number of available projects for empirical analysis. Second,

JavaScript has richer stylistic elements in writing source code compared with other

popular scripting languages such as Python or Ruby. For example, JavaScript uses

10 Pre-2012 data is not available on GitHubArchive or GHTorrent; therefore, limiting the dataset

to post 2012 ensures that all activities and versions are fully captured. Also, GitHub witnessed

significant growth in 2012 in terms of the number of project repositories on the platform,

suggesting the theoretical feasibility of using data from 2012. Nevertheless, some traceable data

before 2012 are used for specific measures (e.g., developers’ familiarity and experiences).

86

braces for program flow control, while Python and Ruby use indentation to control

the structure, which reduces the number of style elements in the code. Third, it is

usually difficult to compare across programming languages, especially for comparing

programming styles, since each language has its own coding logic.

We constructed our data in October 2016 with all projects and related

information (e.g., commits, issues and pull requests) from the inception of GitHub,

and mainly focus on projects initiated between 2012 and 2014 to guarantee sufficient

development duration for empirical analysis. We further excluded those individual

projects and projects that are not continuously developed from our dataset,11

consistent with the focus of our study. The identification of collaborative

development projects left us with a total of 5,589 projects. To rule out the influence

of potential governance mechanisms that may affect coding preferences, we did not

include projects associated with organizational accounts.12 After removing projects

that have been deleted by the owner, we were left with a total of 2,281 collaborative

projects for empirical analysis.

5.6 Empirical Method

5.6.1 Measures of Programming Style

One of the main challenges we need to address is how to quantify and operationalize

programming style, i.e., the inconsistency of programming style. We follow the

existing literature in programming languages and software engineering on the

quantification of coding style, and also reference some industry standards (i.e., style

guides). Specifically, we adopt the “attributes counting” (or rule/metric-based)

approach for assessing style (Lee et al. 2013b; Mi et al. 2016; Smit et al. 2011a). The

11 Although these projects are excluded from our sample, they are used to measure the variables

such as team familiarity and developer experience, which are discussed in section 5.6.2.

12 An organizational account is a type of higher level account that can govern all projects and

developers together under the same organization. If a project belongs to organizational account,

it may be enforced with certain governance mechanisms from the organization leading the

project.

87

attributes are usually based on some metrics that describe the characteristics of the

source code and constitute the fingerprint of developers. They mainly consist of three

categories: programming format metrics, programming readability metrics and

programming language metrics (Mi et al. 2016). Programming format metrics include

those attributes related to the physical layout of the source code and the usage of

white spaces. Two code segments can be lexically identical but different in format.

Attributes such as indentation, alignment and braces belong to this category.

Programming readability metrics relate to attributes that represent the degree of

readability without affecting the function and efficiency of source code. Naming style

and the usage of comments are examples of this category. Programming language

metrics represent the preferences of developers to implement the functionalities in the

code, such as looping structure and the usage of keywords in a specific language.

To quantify these metrics and construct variables for analysis, we first

identify different scenarios for each metric and then compile a vector that captures

every scenario (by indicators) in all metrics. The style vector is built at the source file

level. Although there could be more fine-grained levels to construct the vector (e.g.,

at the method or function level), it is not meaningful to extract fingerprints at these

levels due to limited code structure information. Also, it is difficult to build the vector

at developer level since each file in an open source project can be edited by multiple

developers. Therefore, we set our granularity at file level, but we do track the source

of different programming styles (by comparing file level style inconsistency across

versions). In addition, it is necessary to have enough lines of code to capture

meaningful fingerprints; otherwise, the vector will be sparse (i.e., filled with many

zeros) and will not guarantee a reliable measure (Mi et al. 2016). The vector is

defined as
a b c1 2 k 1 2 k 1 12 k(a ,a ,...,a ,b ,b ,...,b ,c ,c ,...,c ,...) , where a1 to aka represent the

indicators for metric a (where each element is a scenario for metric a). These

indicators calculate the numeric values (e.g., percentages, average numbers or binary

88

indicators) of each scenario. The groups a, b and c suggest different attributes to

quantify programming style. The subscripts ka, kb and kc specify the number of

common scenarios for each metric. For example, if metric a is about the attributes of

curly brackets in the code, a total of ka scenarios (e.g., proportion of brackets at the

start of source code line and proportion of brackets at the end of line) will be

identified and the indicator of each scenario is calculated (see Table 5-1 in section

5.7.1 for the list of metrics adopted). Such a vector can capture the common stylistic

elements in the source code and makes it easy for further operationalization. Given

the potential differences on scales among metrics, all the vectors will be standardized

before further calculations.

After obtaining the style vector based on the list of metrics, we then

operationalize a set of measures that can represent the difference or inconsistency in

programming style. We start from file-level measures and then construct project level

measures for further econometric analysis. Two major groups of measures can be

constructed: programming style inconsistency and number of different programming

styles. At source code file level, we define within file inconsistency as the extent of

programming style inconsistency within a source file. For each metric, the extent of

concentration for some specific scenario indicators captures whether the source code

style is consistent for that metric (i.e., high concentration suggests consistent style,

while low concentration represents inconsistent style). Note that this is only

applicable for indicators that substitute each other within a specific metric since only

some indicators are able to capture within file inconsistency. For example, indicators

for the proportion of different naming styles can capture within file style

inconsistency, but average length of variable names cannot capture within-file

inconsistency but only across-file inconsistency. The Herfindahl-Hirschman index

(Harrison and Klein 2007) is used to measure the extent of concentration within a

metric. Then, file level inconsistency can be aggregated to the project level. In

addition to within-file inconsistency, we define across-file inconsistency as the

89

differences of programming styles across source code files. A file can be internally

consistent in style but be different from other files. The style inconsistency between

two source files can be calculated using the cosine distance between the two code

fingerprint vectors. All the pairs of similarity can be aggregated at the project level.

Specifically, within file inconsistency and across file inconsistency at file level and

project level are specified as:

2

2 2

[(1 (/))] /

1

/

[(

i iK k k
ij iji j j

im imi j

im imi j i j

ii

WithinFileInconsistency a a K

a b
AcrossFileInconsistency

a b

ProjectWithinFileInconsistency WithinFileInconsistency N

ProjectAcrossFileInconsistency Acr

= −

= −

=

=

  

 

   


2 /]ii

ossFileInconsistency N

Following a similar specification pattern in the style vector, in the file-level

definition, a and b represent the elements in the fingerprint vector with i denoting the

metric and j denoting the sub-metric indicator. ki represents the number of available

indicators that substitute each other for metric i (note that the equation for within-file

inconsistency is only applicable for complementary indicators under a specific

metric) and K is the total number of metrics. At project level, N denotes the total

number of files in the project and we use the standard deviation approach (Harrison

and Klein 2007) to capture the deviation of programming style distances from file i to

the mean of all files (denoted by m). These measures allow identifying the situations

on both the within-file and across-file inconsistency in the source files.

From an empirical consideration, we compiled a customized python program

based on the automatic code comprehension approach in Closure Linter13 from

Google. This approach takes a tokenization method to interpret each element in the

code sequentially and stores the structure of source code in a set of tokens. Then we

follow both the rules used in Mi et al. (2016) and some other important rules in

13 Original source code of Closure Linter can be found at: https://github.com/google/closure-

linter

https://github.com/google/closure-linter
https://github.com/google/closure-linter

90

popular JavaScript style guides such as the Airbnb JavaScript Style Guide and the

Google JavaScript Style Guide.14 For each coding style metric, we scanned the tokens

generated by the source codes and obtained indicators by checking the code lines

around each token.

5.6.2 Econometric Specification

We first build a project-month level econometric model to test our hypotheses on the

consequences of programming style (H1 to H5). We use projects that do not have

coding standards to avoid differences across those projects. We construct our key

variables at the project level across calendar months. To resolve the potential

simultaneity issue, the dependent variables are operationalized at the current month,

while the independent variables are captured by the end of last time period (i.e.,

previous month). The definition and operationalization of variables are described

below.

Dependent Variables. To test our hypotheses on different outcomes in open source

projects, we use three sets of dependent variables at month t (i.e., the current month).

For the collaboration outcomes (e.g., H1a and H1b), we use the number of new

contributors (NewDev), and the total number of contributions or code changes by

existing members (Activeness – Commit, Change) in month t as the dependent

variables (Moqri et al. 2015). New contributors are defined as developers who

contribute to the project for the first time in the current month, while existing

members are those who have contributed to the project before the current month. For

activeness, we measure the total contributions in two ways – For development

outcome (e.g., H2), we consider both the number of releases in month t (Release) and

a binary variable to indicate whether there are releases in a project in month t to

14 See https://github.com/airbnb/javascript for Airbnb JavaScript Style Guide and

https://google.github.io/styleguide/javascriptguide.xml for Google JavaScript Style Guide. For

these style guides, we do not follow the exact rules defined but take the potential metric of

coding preference into consideration.

https://github.com/airbnb/javascript
https://google.github.io/styleguide/javascriptguide.xml

91

capture the event of the next release (HasRelease). For diffusion (i.e., H3a and H3b),

we measure attention as the number of forks or watchers of the project at month t

(Attention – Fork, Watch) and code reuse as the number of new commits in the forks

of the project at month t (Reuse). The event data of GitHub allow us to track these

variables across time. We also note that developers may clean the source code to

obtain better formatting. These commits are excluded from the operationalization of

variables to avoid measurement errors.

Independent Variables. The core independent variables, as specified in hypotheses,

are the measures of programming style. As discussed in section 5.6.1, we measure

programming style inconsistency based on the file-level vector of metrics. Thus, the

key independent variables are the project level within file inconsistency

(WithinInconsistency) and across file inconsistency (AcrossInconsistency). They are

captured at the end of month t-1. We pick the last version of source code at the month

t-1 (i.e., the source code generated by the last commit in month t-1) to operationalize

these variables.

Moderator Variables. To test the moderating effects in H4 and H5, we construct

project team level variables to capture the team familiarity and developer experience.

Specifically, we measure the familiarity within the project team as the number of

collaboration ties (Collaboration) and friendship ties (Friendship) of team members

at the end of month t-1. Collaboration ties represent the collaboration experiences

among the current team members in other projects. Friendship ties are measured by

the follower and followee relationship of team members. For developer experience,

we measure it as the number of commits a developer has contributed to other projects

by the end of month t-1 and construct the project-level variable by averaging

experiences across developers (Experience). Given the longitudinal nature of the

panel model, we also expect these moderating variables vary across time so that they

can be included as control variables in all models.

92

Control Variables. We also include a set of control variables for both collaboration

and software factors at the end of month t-1. Specifically, the number of issues (i.e.,

general discussions) (Issues) in month t-1, the number of developers (NumDev) by

month t-1, total commits (NumCommits) by month t-1, total forks (NumForks) by

month t-1 capture the development process and stages, which can affect the

subsequent collaboration, development and diffusions. These variables are tracked in

the event data of the projects and can be accessed across the project history. Besides

these behavioral factors in the project, the number of source code files (NumFiles), as

well as source code complexity (Complexity) are the key characteristics exhibited

from the source codes themselves that may affect subsequent project functioning.

These software factors will be analyzed using SonarQube,15 including McCabe’s

cyclomatic complexity (per function) (McCabe 1976) and maintainability index (Riaz

et al. 2009). Moreover, we try to control the quality of source code since style

inconsistency may be correlated with source code quality. We use the number of

violations per file (Violations) to capture the overall quality of the source code

(Avgustinov et al. 2015), which can also be calculated by static code analysis

software such as SonarQube.16 Dummy variables that account for the time trend of

project (i.e., time fixed effects) will also be incorporated in the model. The main

econometric models discussed above are specified as below:

{ , , }

exp()
()

1 exp(

it it it it-1 it-1

it-1 it

it-1 it-1 it-1
it

it-1

NewDev Activeness Release StyleInconsistency Interactions

Controls u

StyleInconsistency Interactions Controls
Pr Release

StyleInconsistency Interactio

= +

+ +

+ +
=

+ +)

{ , }

it-1 it-1

it it it-1 it-1

it-1 it

ns Controls

Attention Reuse StyleInconsistency Interactions

Controls u

+

= +

+ +

where

15 Details can be found at http://www.sonarqube.org/

16 See https://rules.sonarsource.com/javascript for the rules used to capture violations in

SonarQube.

http://www.sonarqube.org/
https://rules.sonarsource.com/javascript

93

{ , }

{ ,

it-1 it-1 it-1

it-1 it-1 it-1

it-1 it-1

it-1 it-1

StyleInconsistency WithinInconsistency AcrossInconsistency

Interactions StyleInconsistency Familarity

StyleInconsistency Experience

Familarity Friendship Colla

=

= 

+ 

= }it-1

it-1 it-1 it-1

it-1 it-1

it-1 it-1 it-1

boration

Controls Issues NumDev

NumCommits NumForks

NumFiles Complexity Violations

= +

+ +

+ + +

We use linear regressions for all the models with project-level fixed effects.

For model 2 (Release), additional logistic regressions (which captures the timing of

project release by a discrete hazard) with project fixed effects are employed.17 We

expect that programming style inconsistency will negatively impact the dependent

variables, showing that inconsistency of coding style will lead to negative

consequences for collaboration, development and diffusion. However, for within team

collaboration (Activeness) and development process (Release), we expect that team

familiarity and developer experience can positively moderate the negative effects of

programming style inconsistency.

5.6.3 Econometric Model for Antecedents

The previous discussions and econometric models focus on the consequences of

programming style on open source collaboration. However, as discussed in our

hypotheses development, project control (i.e., the enactment of coding standards) as

an antecedent of programming style inconsistency (see H6) has not been examined in

the previous models. To test the related hypothesis about the use of coding standard,

we adopt a different model specification that tests whether including a coding

standard can reduce style inconsistency in the source code. Meanwhile, the sample

used to test this effect is also different from previous models where projects with

17 With a fixed effects specification, projects that do not have any release will be dropped in the

logistic model. In addition, as our key independent variables change across time, especially

between releases, we model the release in the manner of discrete choice model instead of panel

survival model, which may lose significant amount of information of key variables between

events.

94

coding standards are excluded in the analysis. All projects that conform our

requirements on continuous collaboration and development are included for this

analysis.

Following this model setting, we operationalize project control as a binary

variable that captures the enactment of coding standard in the project repository. This

can be identified by whether there are files related to the linting tools (with some

specific file extensions) or style guides. Projects choose whether or not to control the

coding style using standard files across time, offering a quasi-experiment setting. This

can help us to evaluate the effect of coding standard on style inconsistency as a

treatment effect. However, the decision on whether or not to adopt coding standards

is endogenous – projects that enact the coding standards can be quite different from

those without strict project control. To address this issue and enable clear

identification, we further only consider projects that enact coding standards during the

project’s development process to estimate the before-after effect and use propensity

score matching to select projects with similar characteristics but without coding

standards (Caliendo and Kopeinig 2008; Rubin 2008). The specification of a Probit

model to estimate the propensity score and the panel difference-in-difference model

to test whether coding standards reduce style inconsistency are described as:

() (

)

it it-1 it-1 it-1 it-1

it-1 it-1 it-1

it-1 it-1 it-1 it-1

it

Pr CodingStandard Issues NumDev NumCommits NumForks

NumFiles Complexity Violations

Familarity Experience Time StyleInconsistency

StyleInconsistency C

=  + + +

+ + +

+ + + +

= i t

i t

it-1 it-1 it-1

odingStandard PostStandard

CodingStandard PostStandard

Familarity Experience Controls

+

+ 

+ + +

The matching procedure is performed at project-month level. For each project

with coding standard included, one project month observation from projects without

coding standard will be selected according to the nearest neighbor matching approach

(or Mahalanobis distance matching). In addition to the control variables used in the

previous models, total time since project initiation (Time, in month) and the current

95

style inconsistency in the project are used in the matching. After selecting the control

group, we examine the short-term effects of enacting coding standard (H6a) by

comparing the style inconsistency in the month after treatment. The average treatment

effect on the treated (ATT) is calculated on the difference of style inconsistency to

estimate the immediate change. Specifically, ATT is measured as the difference

between the change of style inconsistency after treatment in the treated group and the

change of style inconsistency after the matched project-month in the control group

(i.e., a difference-in-difference estimation with single time period). To test the long-

term or overall effects of enacting coding standard (H6b), we use the time periods

before and after the event to estimate the difference-in-difference model (for the

treatment group, the event month is the month during which the coding standard was

enacted, while for the control group, the month of matched observation can be

regarded as the counterfactual event month). The coefficient of the interaction term

will suggest the treatment effect of enacting a coding standard in the project.

5.7 Results

5.7.1 Stylistic Metrics and Source Code Analysis

The first part of the empirical analysis is to identify the metrics for measuring

programming style and create the fingerprint vector for each source code file.

Although popular style guides already define a list of metrics concerning code quality

and stylistic elements, researchers usually select a group of important metrics to

quantify programming styles and code quality. We follow the existing software

engineering literature to select the metrics for quantifying style inconsistency

(Binkley et al. 2013; Boogerd and Moonen 2008; Mi et al. 2016; Mohan and Gold

2004; Smit et al. 2011a). Given our focus on the inconsistency of coding style, we

choose metrics that are purely related to preference instead of code quality. Table 5-1

presents the metrics and indicators adopted in our empirical analysis. Among all these

metrics, those metrics with complementary indicators (indicators that sum up to one)

96

were used for measuring within file style inconsistency, while all indicators were

used to capture across file style inconsistency. Therefore, 22 indicators (the sources of

metrics are marked in Table 5-1) were created for within file inconsistency and 62

indicators constituted the fingerprint vector for across file inconsistency.

With our customized program, for each project-month code version, all the

JavaScript files in the projects were scanned and checked for stylistic metrics. More

than 5 million source files in total were analyzed for the stylistic fingerprint (with our

program) and code quality metrics (with SonarQube). As documented in software

engineering and programming language research (Mi et al. 2016), the fingerprint

extracted can only be meaningful when there are sufficient lines of code in the files.

Therefore, source code files with too few lines were excluded for measuring style

inconsistency. In addition, by examining file extensions used by major code checking

tools (e.g., ESLint),18 our program identified a total of 849 projects with coding

standards in their project files within our selected time window. After removing these

projects and a small group of projects with fatal errors in the code,19 our sample used

for the consequence model contains a total of 1,286 projects. The 849 projects are

then used in the antecedent model.

18 For instance, a project with coding standard may adopt ESLint as the code checking (i.e.,

linting) tool. Therefore, a configuration file of ESLint will be included in the codebase and can

be identified by our code scanner.

19 Some files in our analysis were reported with severe grammatic errors by our code scanner

and SonarQube (so they cannot be properly tokenized or parsed). The errors mostly come from

incomplete code so that these source code files cannot be run and extracted with meaningful

information. Therefore, they are removed from our analysis.

97

Table 5-1. Programming Style Metrics and Indicators

Metric Indicators

Indentation (1)

The proportion of source code lines using 2 spaces indentation.

The proportion of source code lines using 4 spaces indentation.

The proportion of source code lines using 8 spaces indentation.

The proportion of source code lines using tab indentation.

The proportion of source code lines using other indentation.

Brace Spacing (4)

The proportion open braces with spaces before.

The proportion open braces with spaces after.

The proportion end braces with spaces before.

The proportion end braces with spaces after.

Parenthesis Spacing (4)

The proportion open parentheses with spaces before.

The proportion open parentheses with spaces after.

The proportion end parentheses with spaces before.

The proportion end parentheses with spaces after.

Comma Spacing (2)
The proportion commas with spaces before.

The proportion commas with spaces after.

Colon Spacing (2)
The proportion colons with spaces before.

The proportion colons with spaces after.

Comment Spacing (2)
The proportion of multiple line comments starting with space.

The proportion of single line comments starting with space.

White Space
The average length of white spaces.

Whether the last line is a new blank line.

Function Name (1)

The proportion of lowercase characters in function names.

The proportion of uppercase characters in function names.

The proportion of number characters in function names.

The proportion of underscore characters in function names.

Variable Name (1)

The proportion of lowercase characters in variable names.

The proportion of uppercase characters in variable names.

The proportion of number characters in variable names.

The proportion of underscore characters in variable names.

Comment Style

The proportion of blank lines.

The proportion of comment lines.

The proportion of inline comments in all comment lines.

The proportion of single line comments in all comment lines.

The proportion of multiple line comments in all comment lines.

The proportion of JS doc comments in all comment lines.*

Brace Style (2)

The proportion of open braces alone in line.

The proportion of open braces at the beginning of line.

The proportion of open braces at the end of line.

The proportion of open braces at the middle of line.

The proportion of end braces alone in line.

The proportion of end braces at the beginning of line.

The proportion of end braces at the end of line.

The proportion of end braces at the middle of line.

Operator Style (1)

The proportion of dot operator at the beginning of line.

The proportion of dot operator at the end of line.

The proportion of dot operator at the middle of line.

Looping Structure (1)

The proportion of for in all loops.

The proportion of while in all loops.

The proportion of do-while in all loops.

98

Selection Structure (1)
The proportion of if-else in all selections.

The proportion of switch-case in all selections.

Keywords Usage*

The ratio of number of keywords try to number of lines.

The ratio of number of keywords catch to number of lines.

The ratio of number of keywords const to number of lines.

The ratio of number of keywords default to number of lines.

The ratio of number of keywords continue to number of lines.

The ratio of number of keywords delete to number of lines.

The ratio of number of keywords goto to number of lines.

The ratio of number of keywords with to number of lines.

The ratio of number of keywords package to number of lines.

The ratio of number of keywords return to number of lines.

The ratio of number of keywords throw to number of lines.

The ratio of number of keywords typeof to number of lines.

Copyright Whether the file contains copyright information.

Notes: *These metrics or indicators are specific to the JavaScript language. The numbers in parentheses

after metric names refer to the number of indicators created for within file style inconsistency from the

metric. Among the metrics, indentation, brace spacing, parenthesis spacing, comma spacing, colon

spacing, comment spacing, white space, brace style and operator style and belong to the category of

Programming Format; Function name, variable name and comment style belong to the category of

Programming Readability; Loop structure, selection structure and keyword usage belong to the category

of Programming Language.

5.7.2 Results of the Consequence Model

With the 1,286 projects that do not have coding standards in their repositories, we

perform econometric analysis for the consequence model following section 5.6.2.

Table 5-2 presents the descriptive statistics and correlations of variables in the

consequence model. High correlations were not observed among the variables and all

the variables except WithinInconsistency, AcrossInconsistency and Complexity are

log-transformed to account for their skewed distributions.

Table 5-2. Descriptive Statistics and Correlation Matrix

 Mean SD (1) (2) (3) (4) (5) (6) (7) (8) (9)

1. NewDev 0.479 1.1652 1

2. Commit 16.99 43.068 0.31*** 1
3. Change 23755 237322 0.05*** 0.15*** 1

4. Release 0.0862 0.7166 0.12*** 0.17** 0.03*** 1

5. Fork 1.7314 7.6924 0.39*** 0.11*** 0.01 0.06*** 1
6. Watch 8.4770 37.309 0.40*** 0.11*** -0.00 0.11*** 0.42*** 1

7. Reuse 5.8235 24.016 0.33*** 0.36*** 0.02*** 0.07*** 0.25*** 0.22*** 1

8. WithinInconsistency 0.1421 0.0292 -0.11*** -0.01 0.00 -0.04*** -0.08*** -0.11*** -0.07*** 1
9. AcrossInconsistency 0.0101 0.0247 -0.01 -0.01 0.01 0.03*** -0.02** -0.01 -0.00 -0.27*** 1

10. Issues 4.7414 19.434 0.27*** 0.26*** 0.03*** 0.11*** 0.22*** 0.22*** 0.28*** -0.08*** -0.00

11. NumDev 10.974 15.888 0.41*** 0.14*** 0.02** 0.08*** 0.33*** 0.36*** 0.28*** -0.16*** -0.01
12. NumCommit 335.59 610.09 0.13*** 0.41*** 0.10*** 0.18*** 0.10*** 0.11*** 0.28*** -0.05*** -0.01

13. NumFork 35.281 139.38 0.32*** 0.08*** -0.00 0.04*** 0.58*** 0.54*** 0.24*** -0.12*** -0.01*

14. NumFile 30.965 87.870 -0.00 0.05*** 0.06*** 0.01 -0.02* -0.02** 0.04*** -0.10*** 0.20***
15. Complexity 7.0382 3.1718 -0.04*** 0.03*** 0.05*** -0.00 -0.01 -0.03*** -0.02** 0.36*** 0.01

16. Violations 3300.7 9979.2 -0.02* 0.07*** 0.10*** 0.01 -0.03*** -0.03*** 0.00 -0.00 0.07***

17.Friendship 2.2628 5.893 0.09*** 0.06*** -0.00 0.02** 0.04*** 0.14*** 0.10*** -0.08*** -0.04***

18. Collaboration 159.88 2064.0 0.04*** -0.00 -0.00 -0.01 0.01* -0.01 0.01 0.02* -0.00

19. Experience 16578 48777 0.06*** 0.02** 0.01 0.02** 0.05*** 0.10*** 0.05*** -0.07*** -0.02**

99

 (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

10. Issues 1

11. NumDev 0.26*** 1
12. NumCommit 0.27*** 0.44*** 1

13. NumFork 0.24*** 0.60*** 0.22*** 1

14. NumFile 0.00 0.01 0.11*** -0.01 1
15. Complexity -0.02** -0.05*** 0.03*** -0.01* 0.10*** 1

16. Violations 0.00 -0.04*** 0.11*** -0.03*** 0.57*** 0.21*** 1

17.Friendship 0.07*** 0.26*** 0.19*** 0.08*** -0.03*** -0.13*** 0.01* 1
18. Collaboration -0.01 0.24*** 0.07*** 0.03*** 0.04*** -0.01 0.01 0.18*** 1

19. Experience 0.04*** 0.23*** 0.09*** 0.11*** -0.01 -0.07*** -0.02*** 0.22*** 0.22*** 1

Significance Levels: * p < 0.05, ** p < 0.01, *** p < 0.001. N=21,768.

The results on the main effects of style inconsistency are presented in Tables

5-3 and 5-4. In Table 5-3, the number of new contributors is not affected by

programming style inconsistency (Model 1) – neither within file inconsistency (=-

0.107, ns) nor across file inconsistency (=0.185, ns) are significant. When new

contributors join the team, the inconsistency of style in source code files does not

seem to matter. It is possible that the new contributors care more about the popularity

(supported by the significance of NumFork), existing team composition and their

connections to the team (Hahn et al. 2008) instead of how the source code looks (all

the software related variables are not significant). Therefore, H1a is not supported. In

Model 2, the effects of style inconsistency on the total number of contributions are

not significant for both within style inconsistency (=-1.281, ns) and across file

inconsistency (=0.296, ns). But in Model 3, we find that within file inconsistency

negatively affects the total changes (i.e., the number of lines changed) made in the

source code (=-6.812, p<0.01). Although within file inconsistency does not affecte

number of contribution times, but it will decrease the amount of changes made to the

source code. But for across file inconsistency, it seems that the differences of coding

style across files do not induce negative effects – they do not affect developers’

activeness on committing new code and certain freedom of code styles does not harm

the collaboration. Therefore, H1b only receives partial support, conditional on the

within file inconsistency and amount of code changes.

100

Table 5-3. Effects on New Contributor and Contributions

 Model 1 Model 2 Model 3

Variables ln(NewDev) ln(Commit) ln(Change)

WithinInconsistency -0.107 -1.281 -6.812***

 (0.448) (1.432) (2.288)

AcrossInconsistency 0.185 0.296 0.119

 (0.281) (1.077) (2.339)

ln(Issues) 0.0540*** 0.381*** 0.804***

 (0.00536) (0.0190) (0.0323)

ln(NumDev) -0.191*** 0.229** 0.720***

 (0.0381) (0.0995) (0.138)

ln(NumCommit) -0.0160 -0.175*** -0.542***

 (0.0120) (0.0423) (0.0607)

ln(NumFork) 0.0902*** -0.119*** -0.234***

 (0.0164) (0.0462) (0.0700)

ln(NumFile) 0.00359 -0.105* -0.323***

 (0.0128) (0.0554) (0.0810)

Complexity -0.00112 -0.00394 -0.0282

 (0.00422) (0.0166) (0.0223)

ln(Violations) 0.00707 0.0990*** 0.436***

 (0.0103) (0.0380) (0.0619)

ln(Friendship) -0.0237 -0.0226 0.0153

 (0.0170) (0.0480) (0.0843)

ln(Collaboration) -0.0460*** -0.00131 -0.0608

 (0.0125) (0.0392) (0.0610)

ln(Experience) -0.0124* -0.0475** -0.166***

 (0.00661) (0.0219) (0.0355)

Constant 0.612*** 2.624*** 7.072***

 (0.0893) (0.272) (0.457)

Observations 21,768 21,768 21,768

R-squared 0.041 0.083 0.059

Number of Projects 1,286 1,286 1,286

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: Project fixed effects and time dummies are included. Robust standard

errors in parentheses.

In Table 5-4, for H2, we do not find any support for project release. In Model

4 and 5, within file inconsistency does not have any effect but across file

inconsistency even has a positive effect on project release. It seems that project teams

do not care about the inconsistency of coding style and the freedom of collaboration

may induce better functional progress. As can be noticed, project release is

significantly affected by the number of issues (i.e., general discussions) posted so that

project teams may attach more weight to functionalities instead of the codebase

(Mallapragada et al. 2012). We also notice that the proportion of projects with

101

releases is quite low (a large number of projects are dropped in the conditional logit

model). It is possible that how project teams leverage releases in GitHub is different

from traditional open source context (Murgia et al. 2014). Model 7 to Model 9 test the

effects of style inconsistency on project diffusion. In Model 6 and Model 7, it seems

that style inconsistency does not affect the attention of projects. Only across file

inconsistency has a partial negative effect on the number of watchers (=-0.976,

p<0.1) and the software related variables are not significant (i.e., complexity and

violations). It may be because a large proportion of community members fork or

watch the projects based on the initial interests instead of further contribution

intention (Sheoran et al. 2014). Therefore, the source code does not play an essential

role for most community users in this process. But in Model 8, we find that within

file inconsistency has a negative effect on code reuse (=-1.222, p<0.05). When

reutilizing the source code for further development, the coding style will play an

important role in the intention to reuse. In addition, the effect does not materialize

with across file inconsistency probably because the reuse of source code may only

occur with limited files. Therefore, H3a is not support and H3b is partially supported

by within file style inconsistency.

102

Table 5-4. Effects on Release, Attention and Code Reuse

 Model 4 Model 5 Model 6 Model 7 Model 8

Variables ln(Release) HasRelease ln(Fork) ln(Watch) ln(Reuse)

WithinInconsistency 0.170 7.359 0.992* -0.539 -1.222**

 (0.296) (7.280) (0.533) (0.948) (0.557)

AcrossInconsistency 1.195*** 10.31*** 0.273 -0.976* -0.263

 (0.338) (3.242) (0.351) (0.587) (0.569)

ln(Issues) 0.0111*** 0.355*** 0.0639*** 0.0726*** 0.214***

 (0.00317) (0.0903) (0.00763) (0.0114) (0.00786)

ln(NumDev) 0.0221 0.564 -0.0264 0.439*** 0.0408

 (0.0150) (0.430) (0.0477) (0.0779) (0.0336)

ln(NumCommit) 0.00464 0.0611 0.0401*** -0.158*** 0.0138

 (0.00449) (0.260) (0.0151) (0.0280) (0.0148)

ln(NumFork) 0.00969 -0.287 0.00409 0.146***

 (0.00880) (0.233) (0.0283) (0.0170)

ln(NumWatch) 0.278***

 (0.0303)

ln(Files) -0.0134* -0.350 0.0249 0.0174 -0.0105

 (0.00810) (0.296) (0.0198) (0.0326) (0.0197)

Complexity 0.00160 -0.100 -0.00351 0.00349 -0.00284

 (0.00193) (0.0664) (0.00495) (0.00978) (0.00542)

ln(Violations) 0.00706 0.356** 0.00324 0.00495 -0.0103

 (0.00706) (0.174) (0.0137) (0.0241) (0.0151)

ln(Friendship) 0.0131 0.174 -0.0311 0.101** -0.0532***

 (0.00978) (0.297) (0.0264) (0.0504) (0.0205)

ln(Collaboration) 0.00186 0.0951 -0.0382** -0.0375 -0.0130

 (0.00549) (0.191) (0.0160) (0.0365) (0.0148)

ln(Experience) -0.00542* -0.212* -0.00994 -0.0480*** -0.000630

 (0.00298) (0.124) (0.00789) (0.0149) (0.00864)

Constant -0.0966 0.412*** 0.116 0.656***

 (0.0667) (0.109) (0.0906) (0.167)

Observations 21,768 4,620 21,768 21,768 21,768

R-squared 0.023 0.128 0.045 0.196 0.054

Number of Projects 1,286 222 1,286 1,286 1,286

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: Conditional fixed effects logit model is used for Model 5. NumWatch

(cumulative number of watchers) is controlled when number of watcher is the

dependent variable (because fork is highly correlated with watcher). Project fixed

effects and time dummies are included. Robust standard errors in parentheses.

In Table 5-5 and Table 5-6, we examine the interaction effects between team

familiarity and developer experience. In Table 5-5, we test H4a and H5a for the

interaction effects on contribution activities. For team familiarity, we find support

from friendship ties. The friendship ties positively moderate the effects of style

inconsistency in Model 9 and Model 11. For total number of contributions, although

friendship ties significantly shift the main effects, the main effects do not seem to be

103

strong. But for total amount of code change, when there are few friendship ties,

within file inconsistency has a strong negative effect on contributions, and this

negative effect can be significantly alleviated by team familiarity through friendship

ties. And when there are more friendship ties among team members, across file

inconsistency tends to be beneficial to contribution activities (the freedom of

contribution is amplified with team familiarity). Similar moderating effects can be

observed for collaboration ties, but only for within file inconsistency (Model 10 and

Model 12). Therefore, H4a is supported with friendship ties and partially supported

with collaboration ties. However, H5a is not supported and across all the models, the

interaction effects between developer experiences and style inconsistency are

negative. Even though we expect that experienced developers have lower costs for

code comprehension, the results seem to suggest that experienced developers have

stronger beliefs on programming style so that they are resistant to inconsistent styles,

both within file and across files. They are less cooperative and more sensitive to style

inconsistency when they have rich experiences in programming. Therefore, the

findings imply that for the two mechanisms (cognitive and material), the cognitive

mechanism may play a more dominant role than material mechanism (Cox and Fisher

2009; Harrison and Klein 2007; van Knippenberg and Schippers 2007).

In Table 5-6, H4b and H5b are examined. From Model 13 to Model 16, we

do not find clear and significant interaction effects between team composition and

style inconsistency on project releases. As we have discussed, project release may be

attached with more functional improvements and can be leveraged differently by

project teams in GitHub. The strategy of releasing new versions may depend more on

external requirements rather than internal resources. Consequently, the effects of

source code, and interaction effects with team composition, would not have an impact

on the project release process. Hence, H4b and H5b are rejected.

104

Table 5-5. Interaction Effects on Contributions

 Model 9 Model 10 Model 11 Model 12

Variables ln(Commit) ln(Commit) ln(Change) ln(Change)

WithinInconsistency -1.895 -1.372 -8.489** -7.183**

 (1.474) (1.433) (3.638) (3.550)

AcrossInconsistency -0.395 -0.219 -3.002 -1.608

 (0.962) (1.109) (3.114) (3.373)

WithinInconsistency × ln(Friendship) 2.816** 6.825**

 (1.187) (2.971)

AcrossInconsistency × ln(Friendship) 1.913* 8.413***

 (0.986) (3.064)

WithinInconsistency × ln(Collaboration) 2.131*** 3.555*

 (0.761) (1.997)

AcrossInconsistency × ln(Collaboration) 1.049 0.346

 (0.855) (2.897)

WithinInconsistency × ln(Experience) -1.176** -1.772*** -3.032*** -3.697***

 (0.458) (0.541) (1.079) (1.337)

AcrossInconsistency × ln(Experience) -0.803** -1.058** -3.499*** -3.017**

 (0.365) (0.420) (1.149) (1.259)

ln(Issues) 0.379*** 0.379*** 0.801*** 0.802***

 (0.0190) (0.0190) (0.0438) (0.0437)

ln(NumDev) 0.200** 0.209** 0.632*** 0.652***

 (0.0994) (0.0992) (0.234) (0.236)

ln(NumCommit) -0.171*** -0.175*** -0.526*** -0.530***

 (0.0418) (0.0421) (0.109) (0.109)

ln(NumFork) -0.114** -0.115** -0.221* -0.222*

 (0.0457) (0.0462) (0.114) (0.115)

ln(Files) -0.0971* -0.0942* -0.309** -0.302**

 (0.0554) (0.0556) (0.151) (0.151)

Complexity -0.00565 -0.00563 -0.0324 -0.0305

 (0.0159) (0.0163) (0.0360) (0.0366)

ln(Violations) 0.0985*** 0.101*** 0.434*** 0.433***

 (0.0380) (0.0378) (0.108) (0.110)

ln(Friendship) -0.0234 -0.0176 0.00456 0.0210

 (0.0485) (0.0479) (0.119) (0.119)

ln(Collaboration) 0.00332 -0.00888 -0.0454 -0.0713

 (0.0389) (0.0386) (0.0952) (0.0949)

ln(Experience) -0.0361* -0.0325 -0.134** -0.131**

 (0.0213) (0.0216) (0.0574) (0.0580)

Constant 2.644*** 2.534*** 7.152*** 6.910***

 (0.272) (0.269) (0.702) (0.695)

Observations 21,768 21,768 21,768 21,768

R-squared 0.084 0.084 0.060 0.060

Number of Projects 1,286 1,286 1,286 1,286

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: Interaction terms are mean-centered to reduce collinearity issues. Project fixed effects

and time dummies are included. Robust standard errors in parentheses.

105

Table 5-6. Interactions Effects on Project Release

 Model 13 Model 14 Model 15 Model 16

Variables ln(Release) ln(Release) HasRelease HasRelease

WithinInconsistency 0.171 0.0798 7.459 7.271

 (0.301) (0.282) (6.947) (6.762)

AcrossInconsistency 1.338*** 1.238*** 11.39*** 9.387**

 (0.344) (0.366) (3.796) (3.946)

WithinInconsistency × ln(Friendship) -0.390 -2.061

 (0.250) (6.239)

AcrossInconsistency × ln(Friendship) 0.221 0.0920

 (0.251) (3.043)

WithinInconsistency × ln(Collaboration) -0.345** 1.197

 (0.162) (4.886)

AcrossInconsistency × ln(Collaboration) 0.257 4.296

 (0.187) (4.550)

WithinInconsistency × ln(Experience) -0.0501 0.0635 -0.586 -1.580

 (0.0680) (0.0817) (1.929) (3.133)

AcrossInconsistency × ln(Experience) 0.147 0.0547 1.812 0.0116

 (0.102) (0.133) (2.169) (3.035)

ln(Issues) 0.0111*** 0.0110*** 0.359*** 0.357***

 (0.00318) (0.00317) (0.0898) (0.0897)

ln(NumDev) 0.0187 0.0190 0.553 0.582

 (0.0150) (0.0151) (0.442) (0.447)

ln(NumCommit) 0.00617 0.00582 0.0410 0.0371

 (0.00471) (0.00477) (0.257) (0.259)

ln(NumFork) 0.00969 0.00889 -0.262 -0.281

 (0.00868) (0.00865) (0.234) (0.234)

ln(Files) -0.0142* -0.0133* -0.352 -0.360

 (0.00786) (0.00796) (0.303) (0.285)

Complexity 0.00132 0.00120 -0.102 -0.109

 (0.00193) (0.00198) (0.0683) (0.0685)

ln(Violations) 0.00845 0.00798 0.373** 0.385**

 (0.00710) (0.00705) (0.184) (0.167)

ln(Friendship) 0.00988 0.00983 0.142 0.180

 (0.00891) (0.00915) (0.351) (0.299)

ln(Collaboration) 0.00237 0.00442 0.102 0.0945

 (0.00544) (0.00570) (0.189) (0.192)

ln(Experience) -0.00522* -0.00547* -0.213* -0.207

 (0.00304) (0.00310) (0.125) (0.127)

Constant -0.106 -0.0883

 (0.0678) (0.0649)

Observations 21,768 21,768 4,620 4,620

R-squared 0.025 0.026 0.129 0.129

Number of Projects 1,286 1,286 222 222

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: Conditional fixed effects logit model is used for Model 15 and 16. Interaction terms are

mean-centered to reduce collinearity issues. Project fixed effects and time dummies are

included. Robust standard errors in parentheses.

106

5.7.3 Results of the Antecedent Model

In the antecedent model, we use the sample of projects with coding standards and

compare them to those without. In line with the quasi-experiment setting and

matching procedure in §5.6.3, we focus on projects that enact coding standard during

the development process. Therefore, a total of 220 projects are included in the

treatment group, while projects without coding standard are used to match with

treated projects. We perform both propensity score matching and Mahalanobis

distance matching to ensure high quality of matching. The key covariates (variables

used to calculate propensity score and Mahalanobis distance, including style

inconsistency, team familiarity, developer experience, time and other control

variables) between treatment and control group after matching are quite similar

(Mahalanobis distance matching slightly outperforms propensity score matching in

this regard), suggesting high quality of the matching procedure.

Table 5-7. Matching Analysis for Short Term Effects of Coding Standard

 Propensity Score Matching Mahalanobis Matching

 Treated Matched Difference Treated Matched Difference

ΔWithinInconsistency -0.0029 -0.0003 -0.0026** -0.0029 0.0002 -0.0031***

ΔAcrossInconsistency 0.0009 0.0002 0.0007 0.0009 0.0002 0.0007

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: N=220 in the treatment group. One to one matching is performed. A caliper of 0.1 is used

for propensity score matching. All covariates are used for Mahalanobis matching.

Heteroskedasticity consistent standard errors are used for statistical inference.

Table 5-7 and Table 5-8 present the matching and difference-in-difference

analysis for H6a and H6b. In Table 5-7, the difference between the changes of style

inconsistency in treated and matched group is significant for within file inconsistency

but not significant for across file inconsistency. This suggests that after the enactment

of coding standard, within file style inconsistency can quickly be reduced but across

file inconsistency is less likely to be affected. Compared to within file inconsistency,

across file inconsistency is more difficult to control since developers may have their

own focus on certain files and do not have much attention on other files (Langlois and

107

Garzarelli 2008). Therefore, the developers may not be able to achieve synergy to

unify coding styles across files and they may only focus on the styles of their current

working files.

Table 5-8. Difference-in-Difference Analysis for Long Term Effects of Coding Standard

 Model 17 Model 18 Model 19 Model 20

Variables WithinInconsistency AcrossInconsistency WithinInconsistency AcrossInconsistency

PostStandard -0.00219*** -0.000312 -0.00171*** 0.000724

 (0.000470) (0.000888) (0.000452) (0.00119)

CodingStandard

× PostStandard

-0.00184*** 0.00348* -0.00132** 0.00230

 (0.000571) (0.00199) (0.000549) (0.00210)

ln(Issues) -1.59e-05 6.00e-05 0.000159 0.000308

 (0.000171) (0.000305) (0.000163) (0.000351)

ln(NumDev) 0.000215 0.000577 0.00404*** -0.00116

 (0.000699) (0.00173) (0.000663) (0.00164)

ln(NumCommit) -0.00140*** -0.000273 -0.00110*** -0.000414

 (0.000329) (0.000777) (0.000322) (0.000783)

ln(NumFork) 0.000173 -7.90e-06 -0.00230*** 0.000734

 (0.000364) (0.000806) (0.000332) (0.000687)

ln(Files) -0.00678*** 0.00111 -0.0105*** 0.00369*

 (0.000392) (0.00168) (0.000396) (0.00201)

Complexity 0.000467*** -0.000345 0.000835*** -0.000268

 (0.000101) (0.000349) (0.000104) (0.000393)

ln(Violations) 0.00534*** -1.93e-05 0.00718*** -0.00142

 (0.000290) (0.00105) (0.000307) (0.00127)

ln(Friendship) -0.00211*** 0.000289 -0.00128*** 0.000155

 (0.000407) (0.00102) (0.000383) (0.00101)

ln(Collaboration) 0.000595* 0.000115 3.41e-06 0.00107

 (0.000312) (0.000981) (0.000290) (0.000916)

ln(Experience) -0.000537*** 0.000306 -0.000744*** 0.000112

 (0.000161) (0.000439) (0.000169) (0.000463)

Constant 0.136*** 0.00416 0.129*** 0.00800*

 (0.00166) (0.00404) (0.00166) (0.00467)

Observations 9,799 9,799 10,294 10,294

R-squared 0.110 0.030 0.157 0.035

Number of

Projects

409 409 432 432

Significance levels: *** p<0.01, ** p<0.05, * p<0.1

Notes: CodingStandard (treatment group effect) is omitted due to the fixed effects specification. Model 17

and 18 follow propensity score matching. Model 19 and 20 follow Mahalanobis matching. Mahalanobis

matching generates a larger control group than propensity score matching so Model 19 and 20 contain more

projects. Project fixed effects and time dummies are included. Robust standard errors in parentheses.

In Table 5-8, the difference-in-difference panel model shows a similar pattern

for the long term effect. The interaction effects are negatively significant for within

file style inconsistency but not significant for across file inconsistency (even slightly

108

positive). Consistent with short term effects, the enactment of coding standards is

likely to reduce within file inconsistency through project control in the long run, but it

is difficult for across file inconsistency to be improved with coding standards.

5.8 Conclusions

This study investigates the role of programming style in open source collaboration.

Although programming style has been documented as an important aspect in software

development, existing studies have yet to study its implications on collaboration

processes. The influence on collaboration is potentially more salient in the open

source context, which is usually based on voluntary contribution and free style project

management without strong restrictions with respect to code writing. Our study

explores and examines the impacts of programming style in OSS development and

how relevant team characteristics shape these relationships. We propose hypotheses

on contributor, software development and community evolution perspectives, and

how project control, team familiarity and developer experience serve as antecedent

and moderators. To test the hypotheses, we quantify programming style inconsistency

through static code analysis and a list of programming metrics. The empirical model

is constructed at project-month level with project fixed effects. A quasi-experiment

setup is used for understanding the usage of coding standards in terms of project

control. Our empirical results suggest that programming style inconsistency

negatively affects contribution activities but not other collaboration measures such as

new contributors, project releases and project popularity. The negative effects mainly

occur through within file style inconsistency but not through across file inconsistency.

In addition, we find that team familiarity could alleviate the negative effects of style

inconsistency, but developer experience would further aggravate the potential

conflicts from inconsistent coding styles. The matching and difference-in-difference

analysis suggest the decrease of within file inconsistency but no changes of across file

inconsistency after the enactment of coding standard in both the short and long terms.

109

5.8.1 Theoretical Contributions

Our study contributes to several streams of literature. First, we contribute to

the literature on OSS development by investigating an important aspect of regulation

and control in software teams. Open source community involves developers with

diverse knowledge and personal traits in programming, which may lead to different

coding styles which may negatively impact the evolvement and management of

development projects. Our findings suggest that there is a certain level of negative

effects from inconsistent programming styles, but mainly limited to within file

inconsistency and contribution activities. Developers tend to care about how the

source codes look when making changes but focus more on other aspects (e.g., team

composition and software functions) for other activities. We also show that a certain

level of freedom for contributions (mainly captured by across file style inconsistency)

is not detrimental for the development process or project evolvement. Therefore, we

identify both the importance of keeping self-regulated (with consistent coding style in

files) and allowing for freedom (with the existence of across file inconsistency)

(Bagozzi and Dholakia 2006; Shah 2006). Our study serves as one of the first studies

that offer insights on how the materiality of open source software affects developer

activities and team functioning. Open source teams should leverage not only the

behavioral aspects of collaboration but also the material aspects of collaboration

deliverables.

Second, our study further investigates the quantification and implication of

programming style in software engineering. Our measures and approaches are useful

for a deeper understanding of stylistic inconsistency in OSS. Specifically, different

with mixed choices in software engineering and programming language research on

the selection of coding rules (Boogerd and Moonen 2008; Lee et al. 2013b), we focus

on coding traces that are not objectively regarded as correct or incorrect, but are more

subjectively related to developers’ preferences. We also extend this stream of

110

literature by capturing two aspects of coding style inconsistency – within file and

across files. The findings suggest differential effects of these two aspects on specific

but not all collaboration outcome measures. Although software engineering research

has examined several approaches for quantifying programming style and identifying

the relationships between software metrics, little is known about how collaborative

behaviors can be affected by software metrics such as style inconsistency and

maintainability. Our study offers insights into the interaction between software

factors and behavioral factors.

Third, we provide possible mitigating factors for group separation relevant to

the diversity literature. Beyond culture or country diversity with documented negative

effects on team performance (Harrison and Klein 2007), we explore another aspect of

separation – technical norms in product development (i.e., programming style in this

study) – which is more likely to be controlled and coordinated in working groups.

Our study implies that in spite of the cultural diversity (Daniel et al. 2013),

coordination with consistent opinions on the product (supported by consistent coding

style) may be helpful for team collaboration and performance. However, in the case

of programming style inconsistency, the diversity also implies the presence of

multiple (and inconsistent) of work styles within the group, which not only relates to

individual’s understanding on the product but also impacts the cognitive intentions to

collaborate with others with different work styles. Our study examines this important

type of diversity which is more salient in the open source community. The findings

show that it may be important for software teams to be tightly coupled within

elements (or product units) (i.e., consistent within file style) but loosely coupled

across elements (i.e., across file style not necessarily to be consistent). Work groups

can leverage different components in the product collaboration to achieve higher

efficiency. In addition, our findings on the interaction effects indicate that more

familiar members and less experienced members may be less sensitive to the

inconsistent opinions or preferences in group work. Therefore, team formation

111

mechanisms can be used to mitigate the conflicts from different styles but experiences

(or potentially tenure) may make the situations worse.

5.8.2 Practical Implications

For practical implications, our study suggests that open source teams need to pay

attention to the software itself (i.e., the programming style from different developers)

when organizing the development process. To facilitate contribution activities, teams

can either enable members to be consistent when contributing source code or enact

coding standard to regulate coding styles in a formal way. The software artifact can

play an essential role in shifting developers’ motivations and efforts. In addition, our

findings suggest that through team formation mechanisms, the consequences of style

inconsistency can be mitigated by stronger connections and familiarity among

developers. But project owners should also notice that more experienced developers

may have stronger beliefs about programming styles so that style inconsistency needs

be reduced to avoid the detrimental moderating effects from developer experience.

5.8.3 Limitations

The current study has several limitations that require further examinations. First, there

may exist variations and heterogeneity across different coding style metrics, which

needs a further check for the effects of different sets or categories of metrics. Second,

our analysis mainly focuses on the code status at the project month level. It is also

necessary to analyze the dynamic evolution of source code at more fine-grained levels

(e.g., how the code evolves across commits). Third, since JavaScript may have certain

unique coding grammars or features, it will be valuable to look at other programming

languages to compare with the current analysis.

112

CHAPTER 6 CONCLUSION

6.1 Summary

Online communities for innovation have been trending in recent years due to its

potential for economic value creation for organizations and society. These

communities go beyond the boundaries of traditional innovation activities within

organizations and democratize individuals in the wave of innovation and

entrepreneurship. My dissertation focuses on this emerging phenomenon and aims to

better understand the open collaboration process in these innovation communities

from a group diversity perspective. Given the nature of geographical dispersion and

voluntary participation, individuals from various cultural and knowledge backgrounds

work and collaborate together. Group diversity serves as a suitable lens for

understanding the collaboration process in such innovation communities.

The first essay investigates an open innovation community where firms use

crowdsourcing in new product development. It focuses on how firms can organize the

crowds in this process. We draw on the diversity literature to define different types of

participants and develop hypotheses on their value contributions in the crowdsourced

new product development process. Using data from 425 new product development

campaigns, I test how the variety of knowledge in participants affect the collective

performance of large online crowds. I find that crowd members with both diverse

experience and specialized experience are helpful for the development process. I also

observe a group of members with T-shaped experience in non-focal tasks may

increase the collective performance. In addition, I do not find any significant effect of

generalists on development duration.

The second essay examines self-organized innovation communities

characterized by open collaboration. It investigates the regulation of open

collaboration by conceptualizing programming style as a type of work style diversity.

Hypotheses about the main effects of programming styles on collaboration,

113

development and diffusion are developed. I also try to explore the moderators and

antecedent of programming style. Based on the software engineering literature, I

measure programming style inconsistency at multiple levels. Using data and source

code in software projects from GtiHub, I find that within file style inconsistency has

negative effects on contribution activities such as code changes and code reuse, but

across file style inconsistency does not significantly impact collaboration outcomes.

The negative effects of within file inconsistency are further (positively) moderated by

team familiarity but (negatively) intensified by developer experiences. In addition, the

adoption of coding standard can help to reduce within file inconsistency but does not

affect across file inconsistency.

In summary, my dissertation seeks to examine the open collaboration process

and the management of innovation communities. I try to understand the open-form

collaboration activities in both firm-oriented innovation communities and self-

organized innovation communities. From a group diversity perspective, I attempt to

examine group level effects of knowledge variety and work style separation on value

co-creation and open collaboration in innovation communities. Overall, my

dissertation presents the investigation of important types group diversity in online

innovation collectives and provides insights on open collaboration and innovation

activities.

6.2 Contributions and Implications

6.2.1 Theoretical Contributions

My dissertation makes several contributions to the literature. First, the essays

contribute to the IS literature on online innovation communities. Although there have

been several streams of research trying to understand online innovation communities,

few studies empirically examine how firms organize the crowd in the innovation

process. The first essay investigates a new business model on crowdsourcing for new

product development and extends this stream of literature by exploring the

114

collaboration and value co-creation process in crowdsourcing campaigns. The new

insights from the business model and research findings enrich the existing

understanding on organizing the crowds using collaboration-based mode. In addition,

research on team collaboration in innovation communities pay little attentions on the

nature of products in the collaboration process. Existing understandings on product

collaboration mostly focus on behavioral factors directly, but neglect the product

itself that can reflect some hidden behavioral differences among group members. The

second essay fills this gap by tapping the source code in open source communities

and by revealing the role of different coding styles in the software innovation process.

Understanding the role of the nature of the product in the collaboration process helps

to explain and resolve more nuanced challenges in open collaboration communities.

In summary, the two essays examine important phenomena about open collaboration

in innovation communities and extend the related literature.

Second, my dissertation also extends the current literature on group formation

in online contexts. In online groups, there are usually frequent entries and exits during

the collaboration process, but only few studies capture this dynamics in online

groups. The two essays, therefore, attempt to capture the dynamics of membership in

online collaboration groups and the evolution of group formation. We show in a

dynamic community environment, how online groups and teams can be organized and

governed to achieve better efficiency and effectiveness in innovation. In addition,

these two essays provide implications on how to form the online groups based

members’ knowledge variety, familiarity and experience (Harrison and Klein 2007;

Huckman et al. 2009) using different perspectives (i.e., distribution of knowledge and

programming style). Thus, my dissertation contributes to the research stream on

group formation by investigating group dynamics and formation in online

communities.

Third, my dissertation attempts to explore group diversity from unique

perspectives and contexts. Although studies on group diversity have drawn various

115

findings and research implications, our knowledge on group diversity in open

collaboration is still limited (Ren et al. 2015). The first essay examines diversity in

large and dispersed online groups, where diverse individuals induce uncertainties in

value creation and management, to extend the diversity literature into the large scale

online collaboration context. Due to the lack of communication among members and

IT-enabled knowledge system in online communityies, the depth of experience plays

a more important role than diversity for in group performance. The second essay

focuses on a specific type of diversity – individual work style diversity – which is less

likely to be observed in offline work groups, in an open collaboration context. Both

essays intend to enrich our knowledge on group diversity in large scaled collaboration

and online collectives, where face-to-face interactions and strict control mechanisms

are uncommon. Therefore, my dissertation brings group diversity into the new

emerged collaboration context in innovation communities and extend the boundary of

the literature.

6.2.2 Practical Implications

My dissertation also provides several practical implications for group formation in

innovation communities. First, firms need to attract experienced members with both

diversity and specialization into the product development process to create value. The

difference between T-shaped in other task members and generalists should also be

noticed for organizing participants in innovation communities. They need to cultivate

community members’ experience by recommending tasks that can enrich both diverse

and specialized knowledge for their members. Second, software teams should pay

greater attention on programming style in the source code to reduce the potential

negative consequences (from within file style inconsistency). They should also be

careful when leveraging team formation and governance mechanisms. They can

implement coding guidelines to control coding style or form project team with

familiar ones, but they need to be careful about the non-cooperative actions of

116

experienced developers. Third, users and leaders for innovation activities in online

communities should pay attention to the nature of the product to be developed.

Consistent opinions, attitudes and contribution styles on the product (particularly the

consistency within the unit of product development) and norms (or routines) in the

collaboration group can facilitate the innovation process even though group members

may exhibit diversity in other dimensions.

117

REFERENCES

Ahlstrom, D. 2010. "Innovation and Growth: How Business Contributes to Society,"

Academy of Management Perspectives (24:3), pp. 11-24.

Amabile, T.M. 1983. "The Social Psychology of Creativity: A Componential

Conceptualization," Journal of Personality and Social Psychology (45:2), p.

357.

Antorini, Y.M., Muniz, A.M., and Askildsen, T. 2012. "Collaborating with Customer

Communities: Lessons from the Lego Group," MIT Sloan Management

Review (53:3), pp. 73-79.

Arabyarmohamady, S., Moradi, H., and Asadpour, M. 2012. "A Coding Style-Based

Plagiarism Detection," International Conference on Interactive Mobile and

Computer Aided Learning, Amman, Jordan: IEEE, pp. 180-186.

Arakji, R.Y., and Lang, K.R. 2007. "Digital Consumer Networks and Producer-

Consumer Collaboration: Innovation and Product Development in the Video

Game Industry," Journal of Management Information Systems (24:2), pp.

195-219.

Archak, N., and Ghose, A. 2010. "Learning-by-Doing and Project Choice: A

Dynamic Structural Model of Crowdsourcing," Thrity First International

Conference on Information Systems, St. Louis, MO.

Archak, N., and Sundararajan, A. 2009. "Optimal Design of Crowdsourcing

Contests," Thirtieth International Conference on Information Systems,

Phoenix, AZ.

Argote, L. 2012. Organizational Learning: Creating, Retaining and Transferring

Knowledge. Berlin, Germany: Springer.

Armstrong, D.J., and Hardgrave, B.C. 2007. "Understanding Mindshift Learning: The

Transition to Object-Oriented Development," MIS Quarterly (31:3), pp. 453-

474.

August, T., Shin, H., and Tunca, T.I. 2013. "Licensing and Competition for Services

in Open Source Software," Information Systems Research (24:4), pp. 1068-

1086.

Avgustinov, P., Baars, A.I., Henriksen, A.S., Lavender, G., Menzel, G., de Moor, O.,

Schäfer, M., and Tibble, J. 2015. "Tracking Static Analysis Violations over

Time to Capture Developer Characteristics," 37th International Conference

on Software Engineering, Florence, Italy: IEEE Press, pp. 437-447.

Avital, M., Andersson, M., Nickerson, J., Sundararajan, A., Alstyne, M.V., and

Verhoeven, D. 2014. "The Collaborative Economy: A Disruptive Innovation

or Much Ado About Nothing?," Thirty Fifth International Conference on

Information Systems, Auckland, New Zealand.

Bagozzi, R.P., and Dholakia, U.M. 2006. "Open Source Software User Communities:

A Study of Participation in Linux User Groups," Management Science (52:7),

pp. 1099-1115.

118

Bayazit, M., and Mannix, E.A. 2003. "Should I Stay or Should I Go? Predicting Team

Members' Intent to Remain in the Team," Small Group Research (34:3), pp.

290-321.

Bayus, B.L. 2013. "Crowdsourcing New Product Ideas over Time: An Analysis of the

Dell Ideastorm Community," Management Science (59:1), pp. 226-244.

Bechky, B.A. 2003. "Sharing Meaning across Occupational Communities: The

Transformation of Understanding on a Production Floor," Organization

Science (14:3), pp. 312-330.

Belsley, D.A., Kuh, E., and Welsch, R.E. 2005. Regression Diagnostics: Identifying

Influential Data and Sources of Collinearity. Hoboken, NJ: John Wiley &

Sons.

Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., and Sharif, B. 2013.

"The Impact of Identifier Style on Effort and Comprehension," Empirical

Software Engineering (18:2), pp. 219-276.

Blau, P.M. 1977. Inequality and Heterogeneity: A Primitive Theory of Social

Structure. New York: Free Press.

Blincoe, K., and Damian, D. 2015. "Implicit Coordination: A Case Study of the Rails

OSS Project," in Open Source Systems: Adoption and Impact. Berlin,

Germany: Springer, pp. 35-44.

Bogers, M., Afuah, A., and Bastian, B. 2010. "Users as Innovators: A Review,

Critique, and Future Research Directions," Journal of Management (36:4),

July 1, 2010, pp. 857-875.

Boh, W.F., Evaristo, R., and Ouderkirk, A. 2014. "Balancing Breadth and Depth of

Expertise for Innovation: A 3M Story," Research Policy (43:2), pp. 349-366.

Boh, W.F., Slaughter, S.A., and Espinosa, J.A. 2007. "Learning from Experience in

Software Development: A Multilevel Analysis," Management Science (53:8),

pp. 1315-1331.

Boogerd, C., and Moonen, L. 2008. "Assessing the Value of Coding Standards: An

Empirical Study," IEEE International Conference on Software Maintenance,

Beijing, China, pp. 277-286.

Boudreau, K. 2010. "Open Platform Strategies and Innovation: Granting Access Vs.

Devolving Control," Management Science (56:10), pp. 1849-1872.

Boudreau, K., Gaule, P., Lakhani, K.R., Riedl, C., and Woolley, A.W. 2014. "From

Crowds to Collaborators: Initiating Effort & Catalyzing Interactions among

Online Creative Workers." Harvard Business School Technology &

Operations Management Unit Working Paper.

Boudreau, K., Lacetera, N., and Lakhani, K.R. 2011. "Incentives and Problem

Uncertainty in Innovation Contests: An Empirical Analysis," Management

Science (57:5), pp. 843-863.

Boudreau, K., and Lakhani, K.R. 2013. "Using the Crowd as an Innovation Partner,"

Harvard Business Review (91:4), pp. 60-69.

119

Buse, R.P., and Weimer, W.R. 2010. "Learning a Metric for Code Readability," IEEE

Transactions on Software Engineering (36:4), pp. 546-558.

Cahalane, M., Feller, J., Finnegan, P., Hayes, J., and OReilly, P. 2014. "Leveraging

Distributed Collective Intelligence: An Investigation of Solver Engagement

with Innovation Challenges," Thirty Fifth International Conference on

Information Systems, Auckland, New Zealand.

Caliendo, M., and Kopeinig, S. 2008. "Some Practical Guidance for the

Implementation of Propensity Score Matching," Journal of Economic Surveys

(22:1), pp. 31-72.

Caliński, T., and Harabasz, J. 1974. "A Dendrite Method for Cluster Analysis,"

Communications in Statistics (3:1), pp. 1-27.

Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi, F., and

Greenstadt, R. 2015. "De-Anonymizing Programmers Via Code Stylometry,"

24th USENIX Security Symposium (USENIX Security 15), Washington, D.C.,

pp. 255-270.

Cannella, A.A., Park, J.-H., and Lee, H.-U. 2008. "Top Management Team

Functional Background Diversity and Firm Performance: Examining the

Roles of Team Member Colocation and Environmental Uncertainty,"

Academy of Management Journal (51:4), pp. 768-784.

Capiluppi, A., Boldyreff, C., Beecher, K., and Adams, P.J. 2009. "Quality Factors and

Coding Standards–a Comparison between Open Source Forges," Electronic

Notes in Theoretical Computer Science (233), pp. 89-103.

Carte, T., and Chidambaram, L. 2004. "A Capabilities-Based Theory of Technology

Deployment in Diverse Teams: Leapfrogging the Pitfalls of Diversity and

Leveraging Its Potential with Collaborative Technology," Journal of the

Association for Information Systems (5:11), pp. 448-471.

Certo, S.T., Busenbark, J.R., Woo, H.s., and Semadeni, M. 2016. "Sample Selection

Bias and Heckman Models in Strategic Management Research," Strategic

Management Journal (37:13), pp. 2639-2657.

Chesbrough, H.W., and Appleyard, M.M. 2007. "Open Innovation and Strategy,"

California Management Review (50:1), pp. 57-76.

Chiravuri, A., Nazareth, D., and Ramamurthy, K. 2011. "Cognitive Conflict and

Consensus Generation in Virtual Teams During Knowledge Capture:

Comparative Effectiveness of Techniques," Journal of Management

Information Systems (28:1), pp. 311-350.

Choi, J., Ferwerda, B., Hahn, J., Kim, J., and Moon, J.Y. 2013. "Impact of Social

Features Implemented in Open Collaboration Platforms on Volunteer Self-

Organization: Case Study of Open Source Software Development," 2013

Joint International Symposium on Wikis and Open Collaboration (WikiSym +

OpenSym 2013), Hong Kong, China: ACM, p. 25.

Cohen, J., Cohen, P., West, S.G., and Aiken, L.S. 2013. Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences. London:

Routledge.

120

Cox, A., and Fisher, M. 2009. "Programming Style: Influences, Factors, and

Elements," Advances in Computer-Human Interactions, 2009. ACHI'09.

Second International Conferences on: IEEE, pp. 82-89.

Cramton, C.D. 2001. "The Mutual Knowledge Problem and Its Consequences for

Dispersed Collaboration," Organization Science (12:3), pp. 346-371.

Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., and Howison, J. 2007. "Self-

Organization of Teams for Free/Libre Open Source Software Development,"

Information and Software Technology (49:6), pp. 564-575.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. 2012. "Social Coding in Github:

Transparency and Collaboration in an Open Software Repository,"

Proceedings of the 2012 ACM conference on Computer Supported

Cooperative Work, Seattle, WA: ACM, pp. 1277-1286.

Dahlin, K.B., Weingart, L.R., and Hinds, P.J. 2005. "Team Diversity and Information

Use," Academy of Management Journal (48:6), pp. 1107-1123.

Daniel, S., Agarwal, R., and Stewart, K.J. 2013. "The Effects of Diversity in Global,

Distributed Collectives: A Study of Open Source Project Success,"

Information Systems Research (24:2), pp. 312-333.

Di Gangi, P.M., and Wasko, M. 2009. "Steal My Idea! Organizational Adoption of

User Innovations from a User Innovation Community: A Case Study of Dell

Ideastorm," Decision Support Systems (48:1), pp. 303-312.

Di Gangi, P.M., Wasko, M.M., and Hooker, R.E. 2010. "Getting Customers' Ideas to

Work for You: Learning from Dell How to Succeed with Online User

Innovation Communities," MIS Quarterly Executive (9:4), pp. 213-228.

Dissanayake, I., Zhang, J., and Gu, B. 2014. "Virtual Team Performance in

Crowdsourcing Contests: A Social Network Perspective," Thirty Fifth

International Conference on Information Systems, Auckland, New Zealand.

Earley, C.P., and Mosakowski, E. 2000. "Creating Hybrid Team Cultures: An

Empirical Test of Transnational Team Functioning," Academy of

Management Journal (43:1), pp. 26-49.

Ely, R.J. 2004. "A Field Study of Group Diversity, Participation in Diversity

Education Programs, and Performance," Journal of Organizational Behavior

(25:6), pp. 755-780.

Estelles-Arolas, E., and Gonzalez-Ladron-de-Guevara, F. 2012. "Towards an

Integrated Crowdsourcing Definition," Journal of Information Science (38:2),

pp. 189-200.

Evangelist, M. 1984. "Program Complexity and Programming Style," IEEE

International Conference on Data Engineering: IEEE, pp. 534-541.

Fang, Y., and Neufeld, D. 2009. "Understanding Sustained Participation in Open

Source Software Projects," Journal of Management Information Systems

(25:4), pp. 9-50.

121

Faraj, S., Jarvenpaa, S.L., and Majchrzak, A. 2011. "Knowledge Collaboration in

Online Communities," Organization Science (22:5), pp. 1224-1239.

Feller, J., Finnegan, P., Fitzgerald, B., and Hayes, J. 2008. "From Peer Production to

Productization: A Study of Socially Enabled Business Exchanges in Open

Source Service Networks," Information Systems Research (19:4), pp. 475-

493.

Fichter, K. 2009. "Innovation Communities: The Role of Networks of Promotors in

Open Innovation," R&D Management (39:4), pp. 357-371.

Fitzgerald, B. 2006. "The Transformation of Open Source Software," MIS Quarterly

(30:3), pp. 587-598.

Franke, N., and Shah, S. 2003. "How Communities Support Innovative Activities: An

Exploration of Assistance and Sharing among End-Users," Research Policy

(32:1), pp. 157-178.

Frantzeskou, G., Stamatatos, E., Gritzalis, S., and Katsikas, S. 2006. "Effective

Identification of Source Code Authors Using Byte-Level Information," 28th

International Conference on Software Engineering: ACM, pp. 893-896.

Füller, J., Bartl, M., Ernst, H., and Mühlbacher, H. 2006. "Community Based

Innovation: How to Integrate Members of Virtual Communities into New

Product Development," Electronic Commerce Research (6:1), pp. 57-73.

Füller, J., Matzler, K., and Hoppe, M. 2008. "Brand Community Members as a

Source of Innovation," Journal of Product Innovation Management (25:6),

pp. 608-619.

Geiger, D., Seedorf, S., Schulze, T., Nickerson, R.C., and Schader, M. 2011.

"Managing the Crowd: Towards a Taxonomy of Crowdsourcing Processes,"

17th Americas Conference on Information Systems, Detroit, MI.

Gläser, J. 2001. "Producing Communities’ as a Theoretical Challenge," Proceedings

of The Australian Sociological Association, Sydney, Australia, pp. 1-11.

Godfrey, M.W., and Tu, Q. 2000. "Evolution in Open Source Software: A Case

Study," International Conference on Software Maintenance, San Jose, CA:

IEEE, pp. 131-142.

Gousios, G. 2013. "The GhTorent Dataset and Tool Suite," Proceedings of the 10th

Working Conference on Mining Software Repositories, San Francisco, CA:

IEEE, pp. 233-236.

Gousios, G., Pinzger, M., and Deursen, A.v. 2014. "An Exploratory Study of the Pull-

Based Software Development Model," Proceedings of the 36th International

Conference on Software Engineering, Hyderabad, India: ACM, pp. 345-355.

Graham, P. 2004. Hackers & Painters: Big Ideas from the Computer Age. Boston,

US: O'Reilly.

Greer, C.R., and Lei, D. 2012. "Collaborative Innovation with Customers: A Review

of the Literature and Suggestions for Future Research," International Journal

of Management Reviews (14:1), pp. 63-84.

122

Grewal, R., Lilien, G.L., and Mallapragada, G. 2006. "Location, Location, Location:

How Network Embeddedness Affects Project Success in Open Source

Systems," Management Science (52:7), pp. 1043-1056.

Haefliger, S., von Krogh, G., and Spaeth, S. 2007. "Code Reuse in Open Source

Software," Management Science (54:1), pp. 180-193.

Hahn, J., and Lee, G. 2013. "Archetypes of Crowdfunders' Backing Behaviors and the

Outcome of Crowdfunding Efforts: An Exploratory Analysis of Kickstarter,"

in: INFORMS Conference on Information Systems and Technology.

Minneapolis, MN.

Hahn, J., Moon, J.Y., and Zhang, C. 2008. "Emergence of New Project Teams from

Open Source Software Developer Networks: Impact of Prior Collaboration

Ties," Information Systems Research (19:3), pp. 369-391.

Hann, I.-H., Roberts, J.A., and Slaughter, S.A. 2013. "All Are Not Equal: An

Examination of the Economic Returns to Different Forms of Participation in

Open Source Software Communities," Information Systems Research (24:3),

2013/09/01, pp. 520-538.

Hansen, M.T., and Von Oetinger, B. 2001. "Introducing T-Shaped Managers.

Knowledge Management's Next Generation," Harvard Business Review

(79:3), pp. 106-116, 165.

Harrison, D.A., and Klein, K.J. 2007. "What's the Difference? Diversity Constructs as

Separation, Variety, or Disparity in Organizations," Academy of Management

Review (32:4), pp. 1199-1228.

Harrison, D.A., Price, K.H., and Bell, M.P. 1998. "Beyond Relational Demography:

Time and the Effects of Surface-and Deep-Level Diversity on Work Group

Cohesion," Academy of Management Journal (41:1), pp. 96-107.

Harrison, D.A., Price, K.H., Gavin, J.H., and Florey, A.T. 2002. "Time, Teams, and

Task Performance: Changing Effects of Surface-and Deep-Level Diversity on

Group Functioning," Academy of Management Journal (45:5), pp. 1029-

1045.

Hars, A., and Ou, S. 2002. "Working for Free? Motivations for Participating in Open-

Source Projects," International Journal of Electronic Commerce (6:3), pp.

25-39.

Haythornthwaite, C. 2009. "Crowds and Communities: Light and Heavyweight

Models of Peer Production," 42nd Hawaii International Conference on

System Sciences: IEEE, pp. 1-10.

He, J., Butler, B.S., and King, W.R. 2007. "Team Cognition: Development and

Evolution in Software Project Teams," Journal of Management Information

Systems (24:2), pp. 261-292.

Heckman, J.J. 1979. "Sample Selection Bias as a Specification Error," Econometrica

(47:1), pp. 153-161.

123

Horwitz, S.K., and Horwitz, I.B. 2007. "The Effects of Team Diversity on Team

Outcomes: A Meta-Analytic Review of Team Demography," Journal of

Management (33:6), pp. 987-1015.

Hou, W., Li, D., and Zheng, H. 2011. "Task Design, Motivation, and Participation in

Crowdsourcing Contests," International Journal of Electronic Commerce

(15:4), pp. 57-88.

Howe, J. 2006. "The Rise of Crowdsourcing," Wired Magazine (14:6), pp. 1-4.

Howe, J. 2008. Crowdsourcing: How the Power of the Crowd Is Driving the Future

of Business. New York: Random House.

Huang, Y., Singh, P., and Mukhopadhyay, T. 2012. "How to Design Crowdsourcing

Contest: A Structural Empirical Analysis," Workshop of Information Systems

and Economics, Oriando, Florida.

Huang, Y., Singh, P.V., and Srinivasan, K. 2014. "Crowdsourcing New Product Ideas

under Consumer Learning," Management Science (60:9), pp. 2138-2159.

Huckman, R.S., Staats, B.R., and Upton, D.M. 2009. "Team Familiarity, Role

Experience, and Performance: Evidence from Indian Software Services,"

Management Science (55:1), pp. 85-100.

Hwang, E., Singh, P.V., and Argote, L. 2014. "Jack of All, Master of Some: The

Contingent Effect of Knowledge Breadth on Innovation," Thirty Fifth

International Conference on Information Systems, Auckland, New Zealand.

Inbar, Y., and Barzilay, O. 2014. "Community Impact on Crowdfunding

Performance." Available at SSRN: http://ssrn.com/abstract=2524910.

Jackson, S.E., and Joshi, A. 2004. "Diversity in Social Context: A Multi‐Attribute,

Multilevel Analysis of Team Diversity and Sales Performance," Journal of

Organizational Behavior (25:6), pp. 675-702.

Jackson, S.E., May, K.E., and Whitney, K. 1995. "Understanding the Dynamics of

Diversity in Decision-Making Teams," in Team Effectiveness and Decision

Making in Organizations. San Fancisco: Jossey-Bass, pp. 204-261.

Jiang, L., and Wagner, C. 2014. "Structuring Time through Participation in Micro-

Task Crowdsourcing: A Time Allocation Perspective," Thirty Fifth

Internaltional Conference on Information Systems, Auckland, New Zealand.

Johnson, M.K., and Hasher, L. 1987. "Human Learning and Memory," Annual review

of psychology (38:1), pp. 631-668.

Kalliamvakou, E., Damian, D., Singer, L., and German, D.M. 2014a. "The Code-

Centric Collaboration Perspective: Evidence from Github," Technical Report

DCS-352-IR, University of Victoria.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., and Damian,

D. 2014b. "The Promises and Perils of Mining Github," Proceedings of the

11th Working conference on Mining Software Repositories, Hyderabad,

India: ACM, pp. 92-101.

http://ssrn.com/abstract=2524910

124

Kang, K., Hahn, J., and De, P. 2012. "The Impact of Depth and/or Breadth of

Experiences in Software Development Productivity," in: Academy of

Management Conference (OCIS Division). Boston: MA.

Kankanhalli, A., Tan, B.C.Y., and Wei, K.-K. 2006. "Conflict and Performance in

Global Virtual Teams," Journal of Management Information Systems (23:3),

pp. 237-274.

Ke, W., and Zhang, P. 2009. "Motivations in Open Source Software Communities:

The Mediating Role of Effort Intensity and Goal Commitment," International

Journal of Electronic Commerce (13:4), pp. 39-66.

Kernighan, B.W., and Plauger, P.J. 1978. The Elements of Programming Style. New

York: McGraw-Hill.

Ketchen, D.J., and Shook, C.L. 1996. "The Application of Cluster Analysis in

Strategic Management Research: An Analysis and Critique," Strategic

Management Journal (17:6), pp. 441-458.

Koh, T.K. 2014. "Participants’ Strategy in Crowd-Based Design Contests–a Prospect

Theory Perspective," Thirty Fifth International Conference on Information

Systems, Auckland, New Zealand.

Krcmar, H., Bretschneider, U., Huber, M., and Leimeister, J.M. 2009. "Leveraging

Crowdsourcing: Activation-Supporting Components for It-Based Ideas

Competition," Journal of Management Information Systems (26:1), pp. 197-

224.

Lakhani, K.R., and Von Hippel, E. 2003. "How Open Source Software Works:“Free”

User-to-User Assistance," Research Policy (32:6), pp. 923-943.

Langlois, R.N., and Garzarelli, G. 2008. "Of Hackers and Hairdressers: Modularity

and the Organizational Economics of Open‐Source Collaboration," Industry

and Innovation (15:2), pp. 125-143.

Lee, G.K., and Cole, R.E. 2003. "From a Firm-Based to a Community-Based Model

of Knowledge Creation: The Case of the Linux Kernel Development,"

Organization Science (14:6), pp. 633-649.

Lee, M.J., Ferwerda, B., Choi, J., Hahn, J., Moon, J.Y., and Kim, J. 2013a. "Github

Developers Use Rockstars to Overcome Overflow of News," CHI 2013 on

Human Factors in Computing Systems, Paris, France: ACM, pp. 133-138.

Lee, T., Lee, J.B., and In, H.P. 2013b. "A Study of Different Coding Styles Affecting

Code Readability," International Journal of Software Engineering and Its

Applications (7:5), pp. 413-422.

Lerner, J., and Tirole, J. 2002. "Some Simple Economics of Open Source," The

Journal of Industrial Economics (50:2), pp. 197-234.

Lettl, C., Herstatt, C., and Gemuenden, H.G. 2006. "Users' Contributions to Radical

Innovation: Evidence from Four Cases in the Field of Medical Equipment

Technology," R&D Management (36:3), pp. 251-272.

125

Levine, S.S., and Prietula, M.J. 2013. "Open Collaboration for Innovation: Principles

and Performance," Organization Science (25:5), pp. 1414-1433.

Li, X., Yoo, Y., and Zhang, Z. 2016. "Searching for “Stability” in Fluidity: A

Routine-Based View of Open Source Software Development Process," Thirty

Seventh International Conference on Information Systems, Dublin, Ireland.

Lichtenthaler, U. 2011. "Open Innovation: Past Research, Current Debates, and

Future Directions," Academy of Management Perspectives (25:1), pp. 75-93.

Lin, Y., Boh, W.F., and Goh, K.H. 2014. "How Different Are Crowdfunders?

Examining Archetypes of Crowdfunders and Their Choice of Projects."

Available at SSRN: http://ssrn.com/abstract=2397571.

Liu, D., Chen, L., and Xu, P. 2018. "Why Crowd Pick Different Winners from

Experts: Evidence from Crowdsourcing Contests," 12th China Summer

Workshop on Information Management, Qingdao, China.

Maimon, O., and Rokach, L. 2005. Data Mining and Knowledge Discovery

Handbook. New York: Springer.

Majchrzak, A., and Malhotra, A. 2013. "Towards an Information Systems Perspective

and Research Agenda on Crowdsourcing for Innovation," The Journal of

Strategic Information Systems (22:4), pp. 257-268.

Mallapragada, G., Grewal, R., and Lilien, G. 2012. "User-Generated Open Source

Products: Founder's Social Capital and Time to Product Release," Marketing

Science (31:3), pp. 474-492.

Malone, T.W., Laubacher, R., and Dellarocas, C. 2010. "The Collective Intelligence

Genome," IEEE Engineering Management Review (38:3), p. 38.

Mannes, A.E. 2009. "Are We Wise About the Wisdom of Crowds? The Use of Group

Judgments in Belief Revision," Management Science (55:8), pp. 1267-1279.

March, J.G. 1991. "Exploration and Exploitation in Organizational Learning,"

Organization Science (2:1), pp. 71-87.

McCabe, T.J. 1976. "A Complexity Measure," IEEE Transactions on Software

Engineering (SE-2:4), pp. 308-320.

McGrath, J.E., Berdahl, J.L., and Arrow, H. 1995. Traits, Expectations, Culture, and

Clout: The Dynamics of Diversity in Work Groups. Washington, DC, US:

American Psychological Association.

Menon, N.M., Mishra, A., and Ye, S. 2017. "Beyond Related Experience: Upstream

Versus Downstream Experience in Innovation Contest Platforms with

Interdependent Problem Domains." Available at SSRN:

http://ssrn.com/abstract=2983599.

Mi, Q., Keung, J., and Yu, Y. 2016. "Measuring the Stylistic Inconsistency in

Software Projects Using Hierarchical Agglomerative Clustering,"

Proceedings of the 12th International Conference on Predictive Models and

Data Analytics in Software Engineering, Ciudad Real, Spain: ACM.

http://ssrn.com/abstract=2397571
http://ssrn.com/abstract=2983599

126

Miara, R.J., Musselman, J.A., Navarro, J.A., and Shneiderman, B. 1983. "Program

Indentation and Comprehensibility," Communications of the ACM (26:11),

pp. 861-867.

Moghadam, J.B., Choudhury, R.R., Yin, H., and Fox, A. 2015. "Autostyle: Toward

Coding Style Feedback at Scale," Proceedings of the Second ACM

Conference on Learning at Scale, Vancouver, Canada: ACM, pp. 261-266.

Mohan, A., and Gold, N. 2004. "Programming Style Changes in Evolving Source

Code," Proceedings of 12th IEEE International Workshop on Program

Comprehension, Bari, Italy: IEEE, pp. 236-240.

Moqri, M., Bandyopadhyay, S., and Cheng, H. 2014. "A Contract for “Crowds”,"

Thirty Fifth International Conference on Information Systems, Auckland,

New Zealand.

Moqri, M., Qiu, L., Bandyopadhyay, S., and Horowitz, I. 2015. "The Effect of

'Following' on Contributions to Open Source Communities," Thirty Sixth

International Conference on Information Systems, Fort Worth, TX.

Murgia, A., Concas, G., Tonelli, R., Ortu, M., Demeyer, S., and Marchesi, M. 2014.

"On the Influence of Maintenance Activity Types on the Issue Resolution

Time," Proceedings of the 10th International Conference on Predictive

Models in Software Engineering: ACM, pp. 12-21.

Nambisan, S., and Baron, R.A. 2010. "Different Roles, Different Strokes: Organizing

Virtual Customer Environments to Promote Two Types of Customer

Contributions," Organization Science (21:2), pp. 554-572.

Narayanan, S., Balasubramanian, S., and Swaminathan, J.M. 2009. "A Matter of

Balance: Specialization, Task Variety, and Individual Learning in a Software

Maintenance Environment," Management Science (55:11), pp. 1861-1876.

Nguyen, C., Oh, O., Kocsis, D., and Vreede, G.-J. 2013. "Crowdsourcing as Lego:

Unpacking the Building Blocks of Crowdsourcing Collaboration Processes,"

Thirty Fourth International Conference on Information Systems, Milan, Italy.

Nickerson, J., Brunswicker, S., Butler, B., and Wagner, C. 2014. "The Evolution of

Ideas by Crowds and Communities: Competition Vs. Cooperation," Thirty

Fifth International Conference on Information Systems, Auckland, New

Zealand.

Nonaka, I., and Takeuchi, H. 1995. The Knowledge Creating Company: How

Japanese Create the Dynamics of Innovation. New York: Oxford University

Press.

Novick, L.R. 1988. "Analogical Transfer, Problem Similarity, and Expertise,"

Journal of Experimental Psychology: Learning, Memory, and Cognition

(14:3), p. 510.

Oh, H., Animesh, A., and Pinsonneault, A. 2015. "Value Co-Creation in

Crowdsourcing: The Effects of Social Networks on Product Co-Development

Project Success," in: INFORM Conference on Information Systems and

Technology. Philadelphia, PA.

127

Oh, W., and Jeon, S. 2007. "Membership Herding and Network Stability in the Open

Source Community: The Ising Perspective," Management Science (53:7), pp.

1086-1101.

Ohno, A. 2013. "A Methodology to Teach Exemplary Coding Style Considering

Students' Coding Style Feature Contains Fluctuations," IEEE Frontiers in

Education Conference, Oklahoma City, OK: IEEE, pp. 1908-1910.

Oman, P.W., and Cook, C.R. 1988. "A Paradigm for Programming Style Research,"

ACM Sigplan Notices (23:12), pp. 69-78.

Paulini, M., Murty, P., and Maher, M.L. 2013. "Design Processes in Collective

Innovation Communities: A Study of Communication," CoDesign (9:2), pp.

90-112.

Pedersen, J., Kocsis, D., Tripathi, A., Tarrell, A., Weerakoon, A., Tahmasbi, N.,

Xiong, J., Deng, W., Oh, O., and de Vreede, G.-J. 2013. "Conceptual

Foundations of Crowdsourcing: A Review of Is Research," 46th Hawaii

International Conference on System Sciences, Hawaii: IEEE, pp. 579-588.

Pelled, L.H. 1996. "Demographic Diversity, Conflict, and Work Group Outcomes:

An Intervening Process Theory," Organization Science (7:6), pp. 615-631.

Pelled, L.H., Eisenhardt, K.M., and Xin, K.R. 1999. "Exploring the Black Box: An

Analysis of Work Group Diversity, Conflict and Performance,"

Administrative Science Quarterly (44:1), pp. 1-28.

Perry-Smith, J.E., and Shalley, C.E. 2003. "The Social Side of Creativity: A Static

and Dynamic Social Network Perspective," Academy of Management Review

(28:1), pp. 89-106.

Phillips, D.J., and Zuckerman, E.W. 2001. "Middle‐Status Conformity: Theoretical

Restatement and Empirical Demonstration in Two Markets," American

Journal of Sociology (107:2), pp. 379-429.

Piller, F.T., and Walcher, D. 2006. "Toolkits for Idea Competitions: A Novel Method

to Integrate Users in New Product Development," R&D Management (36:3),

pp. 307-318.

Prause, C.R., and Jarke, M. 2015. "Gamification for Enforcing Coding Conventions,"

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, Bergamo, Italy: ACM, pp. 649-660.

Ramaswamy, V., and Gouillart, F.J. 2010. The Power of Co-Creation: Build It with

Them to Boost Growth, Productivity, and Profits. New York: Simon and

Schuster.

Ransbotham, S., and Kane, K.C. 2011. "Membership Turnover and Collaboration

Success in Online Communities: Explaining Rises," MIS Quarterly (35:3),

pp. 613-627.

Reed, D. 2010. "Sometimes Style Really Does Matter," Journal of Computing

Sciences in Colleges (25:5), pp. 180-187.

128

Reiss, S.P. 2007. "Automatic Code Stylizing," Proceedings of the 22th IEEE/ACM

International Conference on Automated Software Engineering, Atlanta, GA:

ACM, pp. 74-83.

Ren, Y., Chen, J., and Riedl, J. 2015. "The Impact and Evolution of Group Diversity

in Online Open Collaboration," Management Science (62:6), pp. 1668-1686.

Riaz, M., Mendes, E., and Tempero, E. 2009. "A Systematic Review of Software

Maintainability Prediction and Metrics," Proceedings of the 3rd International

Symposium on Empirical Software Engineering and Measurement, Lake

Buena Vista, FL: IEEE Computer Society, pp. 367-377.

Roberts, J.A., Hann, I.-H., and Slaughter, S.A. 2006. "Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A

Longitudinal Study of the Apache Projects," Management Science (52:7), pp.

984-999.

Rubin, D.B. 2008. "Causal Inference Using Potential Outcomes: Design, Modeling,

Decisions," Journal of the American Statistical Association (62:3), pp. 277-

278.

Rulke, D.L., and Galaskiewicz, J. 2000. "Distribution of Knowledge, Group Network

Structure, and Group Performance," Management Science (46:5), pp. 612-

625.

Savage, N. 2012. "Gaining Wisdom from Crowds," Communications of the ACM

(55:3), pp. 13-15.

Schneider, B. 1987. "The People Make the Place," Personnel Psychology (40:3), pp.

437-453.

Schneider, B., Goldstiein, H.W., and Smith, D.B. 1995. "The Asa Framework: An

Update," Personnel psychology (48:4), pp. 747-773.

Shah, S.K. 2006. "Motivation, Governance, and the Viability of Hybrid Forms in

Open Source Software Development," Management Science (52:7), pp. 1000-

1014.

Sheoran, J., Blincoe, K., Kalliamvakou, E., Damian, D., and Ell, J. 2014.

"Understanding Watchers on Github," Proceedings of the 11th Working

Conference on Mining Software Repositories, Hyderabad, India: ACM, pp.

336-339.

Siegel, P.A., and Hambrick, D.C. 2005. "Pay Disparities within Top Management

Groups: Evidence of Harmful Effects on Performance of High-Technology

Firms," Organization Science (16:3), pp. 259-274.

Singh, P.V. 2010. "The Small-World Effect: The Influence of Macro-Level Properties

of Developer Collaboration Networks on Open-Source Project Success,"

ACM Transactions on Software Engineering and Methodology (20:2), p. 6.

Singh, P.V., and Phelps, C. 2013. "Networks, Social Influence, and the Choice among

Competing Innovations: Insights from Open Source Software Licenses,"

Information Systems Research (24:3), pp. 539-560.

129

Singh, P.V., and Tan, Y. 2010. "Developer Heterogeneity and Formation of

Communication Networks in Open Source Software Projects," Journal of

Management Information Systems (27:3), pp. 179-210.

Singh, P.V., Tan, Y., and Mookerjee, V. 2011. "Network Effects: The Influence of

Structural Social Capital on Open Source Project Success," MIS Quarterly

(35:4), pp. 813-829.

Singh, P.V., Tan, Y., and Youn, N. 2010. "A Hidden Markov Model of Developer

Learning Dynamics in Open Source Software Projects," Information Systems

Research (22:4), pp. 790-807.

Smit, M., Gergel, B., Hoover, H.J., and Stroulia, E. 2011a. "Code Convention

Adherence in Evolving Software," 27th IEEE International Conference on

Software Maintenance, Williamsburg, VA: IEEE, pp. 504-507.

Smit, M., Gergel, B., Hoover, H.J., and Stroulia, E. 2011b. "Maintainability and

Source Code Conventions: An Analysis of Open Source Projects," Technical

Report TR11-06, University of Alberta, Department of Computing Science,.

Soloway, E., and Ehrlich, K. 1984. "Empirical Studies of Programming Knowledge,"

IEEE Transactions on Software Engineering (SE-10:5), pp. 595-609.

Spinellis, D. 2011. "Elyts Edoc," IEEE Software (28:2), pp. 104-104.

Stewart, D. 2005. "Social Status in an Open-Source Community," American

Sociological Review (70:5), pp. 823-842.

Stewart, K.J., and Gosain, S. 2006. "The Impact of Ideology on Effectiveness in Open

Source Software Development Teams," MIS Quarterly (30:2), pp. 291-314.

Surowiecki, J. 2004. The Wisdom of Crowds: Why the Many Are Smarter Than the

Few and How Collective Wisdom Shapes Business, Economies, Societies and

Nations. London: Little, Brown.

Taylor, A., and Greve, H.R. 2006. "Superman or the Fantastic Four? Knowledge

Combination and Experience in Innovative Teams," Academy of Management

Journal (49:4), pp. 723-740.

Terwiesch, C., and Xu, Y. 2008. "Innovation Contests, Open Innovation, and

Multiagent Problem Solving," Management Science (54:9), pp. 1529-1543.

Tibshirani, R., Walther, G., and Hastie, T. 2001. "Estimating the Number of Clusters

in a Data Set Via the Gap Statistic," Journal of the Royal Statistical Society:

Series B (Statistical Methodology) (63:2), pp. 411-423.

van der Vegt, G.S., and Bunderson, J.S. 2005. "Learning and Performance in

Multidisciplinary Teams: The Importance of Collective Team Identification,"

Academy of Management Journal (48:3), pp. 532-547.

van Knippenberg, D., De Dreu, C.K., and Homan, A. 2004. "Work Group Diversity

and Group Performance: An Integrative Model and Research Agenda," The

Journal of Applied Psychology (89:6), pp. 1008-1022.

130

van Knippenberg, D., and Schippers, M.C. 2007. "Work Group Diversity," Annual

Review of Psychology (58), pp. 515-541.

van Knippenberg, D., and van Ginkel, W.P. 2010. "The Categorization-Elaboration

Model of Work Group Diversity: Wielding the Double-Edged Sword," in The

Psychology of Social and Cultural Diversity. Oxford, UK: Wiley-Blackwell,

pp. 257-280.

von Hippel, E. 2005. "Open Source Software Projects as User Innovation Networks,"

in Perspectives on Free and Open Source Software. Cambridge, MA: MIT

Press, pp. 267-278.

von Hippel, E., and von Krogh, G. 2003. "Open Source Software and the "Private-

Collective" Innovation Model: Issues for Organization Science,"

Organization Science (14:2), pp. 209-223.

von Krogh, G., Haefliger, S., Spaeth, S., and Wallin, M.W. 2012. "Carrots and

Rainbows: Motivation and Social Practice in Open Source Software

Development," MIS Quarterly (36:2), pp. 649-676.

von Krogh, G., and von Hippel, E. 2006. "The Promise of Research on Open Source

Software," Management Science (52:7), pp. 975-983.

Vreede, G.-J., Briggs, R.O., and Massey, A.P. 2009. "Collaboration Engineering:

Foundations and Opportunities: Editorial to the Special Issue on the Journal

of the Association of Information Systems," Journal of the Association for

Information Systems (10:3), pp. 121-137.

Weisberg, R.W. 1999. "Creativity and Knowledge: A Challenge of Theories," in

Handbook of Creativity. Cambridge, UK: Cambridge University Press, pp.

226-250.

West, J., and Lakhani, K.R. 2008. "Getting Clear About Communities in Open

Innovation," Industry and Innovation (15:2), pp. 223-231.

West, M.A. 2002. "Sparkling Fountains or Stagnant Ponds: An Integrative Model of

Creativity and Innovation Implementation in Work Groups," Applied

Psychology (51:3), pp. 355-387.

Williams, K.Y., and O’Reilly, C.A. 1998. "Demography and Diversity in

Organizations: A Review of 40 Years of Research," Research in

Organizational Behaviors (20), pp. 77-140.

Woodfield, S.N., Dunsmore, H.E., and Shen, V.Y. 1981. "The Effect of

Modularization and Comments on Program Comprehension," Proceedings of

the 5th International Conference on Software Engineering, San Diego,

California: IEEE Press, pp. 215-223.

Wooldridge, J.M. 2010. Econometric Analysis of Cross Section and Panel Data.

Cambridge, MA: MIT press.

Wulf, G., and Schmidt, R.A. 1997. "Variability of Practice and Implicit Motor

Learning," Journal of Experimental Psychology: Learning, Memory, and

Cognition (23:4), p. 987.

131

Yang, J., Adamic, L.A., and Ackerman, M.S. 2008. "Crowdsourcing and Knowledge

Sharing: Strategic User Behavior on Taskcn," Proceedings of the 9th ACM

Conference on Electronic Commerce: ACM, pp. 246-255.

Yang, Y., Chen, P.Y., and Banker, R. 2010. "Impact of Past Performance and

Strategic Bidding on Winner Determination of Open Innovation Contest,"

Workshop on Information Systems and Economics, St. Louis, MO.

Yang, Y., Chen, P.Y., and Pavlou, P. 2009. "Open Innovation: An Empirical Study of

Online Contests," Thirtieth International Conference on Information Systems,

Phoenix, AZ.

Yu, Y., Yin, G., Wang, H., and Wang, T. 2014. "Exploring the Patterns of Social

Behavior in Github," Proceedings of the 1st International Workshop on

Crowd-based Software Development Methods and Technologies, Hong Kong,

China: ACM, pp. 31-36.

Zhang, C., Hahn, J., and De, P. 2013. "Continued Participation in Online Innovation

Communities: Does Community Response Matter Equally for Everyone?,"

Information Systems Research (24:4), pp. 1112-1130.

Zhang, S., Singh, P.V., and Ghose, A. 2017. "A Structural Analysis of the Role of

Superstars in Crowdsourcing Contests." Available at SSRN:

http://ssrn.com/abstract=2764553.

Zhang, Z., Yoo, Y., Wattal, S., Zhang, B., and Kulathinal, R. 2014. "Generative

Diffusion of Innovations and Knowledge Networks in Open Source Projects,"

Thirty Fourth International Conference on Information Systems, Auckland,

New Zealand.

Zheng, H., Li, D., and Hou, W. 2011. "Task Design, Motivation, and Participation in

Crowdsourcing Contests," International Journal of Electronic Commerce

(15:4), pp. 57-88.

Zhu, K.X., and Zhou, Z.Z. 2011. "Lock-in Strategy in Software Competition: Open-

Source Software Vs. Proprietary Software," Information Systems Research

(23:2), pp. 536-545.

http://ssrn.com/abstract=2764553

