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SUMMARY 

The rapid accumulation of data and advances in data analytics methods create not 

only opportunities but also challenges for data analytics. One fundamental challenge 

arises from the heterogeneity in data patterns. This thesis investigates two frequently 

recurring problems that result in hard-to-be-observed data heterogeneity: missing 

values (the focus of the first study), and dynamic changing data patterns (the focus of 

the second study).  

In my first study entitled “Handling Missing Values without Assuming 

Missing at Random,” I propose approaches to handling missing values that occur not 

at random. Traditional imputation models are often built on complete records – i.e., 

records in the dataset without missing values. However, if missing values do not 

occur at random, estimates of parameters would be biased. In the proposed 

approaches, including a missing value imputation method based on semi-supervised 

learning, and a Monte Carlo likelihood estimation approach for correcting estimation 

bias caused by missing values, I explicitly incorporate the missingness mechanism 

into the data analytics process. I analytically demonstrate that, accommodating the 

missingness mechanism generates comparatively better imputation and statistical 

estimates than traditional methods that ignore the missingness mechanism. In the 

context of two real-world prediction tasks, results show that the proposed semi-

supervised missing value imputation generates higher prediction accuracy compared 

to benchmark imputation methods. In the bias correction problem of regression 

analysis, the proposed Monte Carlo based approach generates unbiased estimation of 

regression coefficients under different missingness mechanisms.  

My second study entitled “Transfer Learning in Dynamic Business 

Environments: Trade-offs in Response to Changes” takes up the challenge that, in 

changing data environments, we often have little information to adjust statistical 

prediction models in a timely matter. In this study, I investigate the question of 
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whether and how we can make use of all of the source data (including the same-

distribution recent source data and the remaining diff-distribution past source data) to 

achieve better prediction accuracy for a target task when there is only a small amount 

of same-distribution source data that exhibits the target data pattern. In this study, I 

bridge the research gap in theoretically understanding when and to what extent 

transfer learning works by using a sample selection perspective to represent changes 

in data patterns. Based on the sample selection model, I derive a probabilistic 

weighting scheme using the large source data set. Moreover, I conduct simulation 

analyses to examine two fundamental trade-offs when changes are detected – 1) 

whether we should use transfer learning to adjust the prediction model, and 2) 

whether we should adjust the prediction model immediately or at a later point in time 

when more same-distribution source data becomes available. The results, 

implications, and contributions are discussed.  

Throughout my dissertation, I seek to understand the underlying mechanisms 

of the heterogeneity in data patterns arising from missing values and changing data 

environments, and to provide theoretical insights on how to approximate and make 

use of the often-overlooked mechanisms. By unveiling the underlying theory and 

assumptions, this dissertation promotes more robust application of data analytics in 

complex data environments.  

Keywords: missing values, data quality, missingness mechanism, not missing at 

random, semi-supervised learning, Monte Carlo, maximum likelihood, transfer 

learning, predictive analytics, machine learning, sample selection, dynamic data 

environments  



x 

 

LIST OF TABLES 

Table 2-1 Algorithm of Semi-Supervised Imputation for Categorical Variable ......... 31 

Table 2-2 Algorithm of Semi-Supervised Imputation for Continuous Variable ......... 37 

Table 2-3 Algorithm of Monte Carlo Maximum Likelihood Estimation to Correct Bias 
Caused by Missing Values ......................................................................... 41 

Table 2-4 Comparison of MAE under Different Missing Value Percentages ............ 50 

Table 2-5 Imputation Accuracy (MAE) Using Linear Imputation Models ................ 53 

Table 2-6 Credit Default Prediction - Data Pre-processing and Sample Construction 
Process ....................................................................................................... 58 

Table 2-7 Credit Default Prediction - AUC Using Different Missing Value Handling 
Methods ..................................................................................................... 59 

Table 2-8 Earnings Prediction - Missing Value Percentage of Predictors .................. 62 

Table 2-9 Earnings Prediction - MAE Using Different Missing Value Handling 
Methods ..................................................................................................... 63 

Table 2-10 Estimation of Beta Coefficients (Missing Value Percentage = 30%) ....... 69 

Table 2-11 Comparing Frequently Used Missing Value Handling Methods.............. 70 

Table 3-1 Categories of Transfer Learning in Supervised Machine Learning ............ 82 

Table 3-2 Algorithm of Transfer Learning Based on Sample Selection ..................... 90 

Table 3-3 Illustration of the Trade-off of When to Adjust the Prediction Model ..... 107 

Table A-1 Estimation of Beta Coefficients (Missing Value Percentage = 10%) ...... 139 

Table A-2 Estimation of Beta Coefficients (Missing Value Percentage = 20%) ...... 139 

Table A-3 Estimation of Beta Coefficients (Missing Value Percentage = 40%) ...... 140 

Table A-4 Comparing Missing Value Handling Methods under Different Simulation 
Settings ..................................................................................................... 143 

Table A-5 Results of Estimation of Coefficients under Miss-specified Missingness 
Mechanism ............................................................................................... 145 

Table A-6 Results of Estimation of Coefficients in Generalized Linear Regression 146 

Table A-7 Tabulated Results of Figure 3-5 .............................................................. 151 

Table A-8 Summary Statistics for Each Method Used in Figure 3-5 ....................... 153 

Table A-9 Tabulated Results of Figure 3-6 .............................................................. 154 



xi 

 

LIST OF FIGURES 

Figure 2-1 Decrease Percentage of Negative Log-likelihood ..................................... 44 

Figure 2-2 Decrease Percentage of Negative Log-likelihood with Probit Model of 
Missingness Mechanism .......................................................................... 45 

Figure 2-3 Decrease Percentage of MAE by Semi-Supervised Imputation Method .. 51 

Figure 2-4 Comparison of Imputation Accuracy of Linear Imputation Models ......... 54 

Figure 2-5 Top Ten Important Variables for Predicting Loan Default ....................... 57 

Figure 2-6 Illustration of Training and Test Data Sets Construction .......................... 61 

Figure 2-7 Top Ten Important Variables for Predicting Earnings .............................. 62 

Figure 2-8 Handling Missing Values in Regression Analysis .................................... 65 

Figure 2-9 Bias of Regression Coefficients Using Listwise Deletion ........................ 68 

Figure 2-10 Bias of Regression Coefficients Using ML-MAR .................................. 68 

Figure 2-11 Bias of Regression Coefficients Using Monte Carlo Likelihood 
Estimation ................................................................................................ 69 

Figure 3-1 Illustration of Same-Distribution and Diff-Distribution Source Data in 
Changing Data Environments .................................................................. 86 

Figure 3-2 Simulation of Changing Data Patterns through Sample Selection ............ 97 

Figure 3-3 Change Detection in Dynamic Data Environments .................................. 98 

Figure 3-4 Change Detection Results ....................................................................... 100 

Figure 3-5 Pairwise Comparison of the Four Methods in Response to Changes ...... 103 

Figure 3-6 Bias-Variance Trade-off in Responding to Changes ............................... 104 

Figure 3-7 Prediction Performance and the Timing of Adjusting the Prediction Model
 ............................................................................................................... 109 

Figure A-1 Illustration of Incomplete Data Matrix ................................................... 128 

Figure A-2 Bias of Regression Coefficients Using Different Missing Value Handling 
Methods ................................................................................................. 142 

Figure A-3 Bias of Regression Coefficients When Missing Values Occur in Both 
Dependent and Independent Variables .................................................. 148 

Figure A-4 Pairwise Comparison Using More Same-Distribution Source Data ...... 150 

Figure A-5 Prediction Performance and the Timing of Adjusting the Prediction Model 
(Full Results) ......................................................................................... 155 



1 

 

CHAPTER 1  INTRODUCTION AND OVERVIEW 

1.1 Research Background and Motivation 

Advances in data analytics techniques and rapid emergence of big data have created 

new opportunities for uncovering hidden knowledge, improving decision making, and 

supporting strategic planning in various business applications (Chen et al. 2012; 

Chiang et al. 2018). Nowadays, with increasing accessibility of data analytics tools, 

managers and analysts can quickly build models and discover patterns in data that can 

aid decision making. However, challenges remain in achieving valid inferences and 

maintaining the viability of our models in the complex data environments. In my 

dissertation, I investigate two problems that add complexity to the data: missing 

values and the dynamic data patterns in business environments.  

An important driver of the challenges in data analytics comes from 

unobservability of the data generating process. In data analytics, analysts approximate 

real-world phenomena by building statistical models. With more advanced machine 

learning and econometrics models, it is possible to approximate reality to a large 

extent. In general, data analytics is built upon the assumption that the data follows a 

uniform data pattern (even if the data pattern per se is assumed to be a complex one 

such as in multimodal analysis). However, there exist scenarios where the 

heterogeneity in data patterns exists. Such heterogeneity may result in a distorted data 

pattern being investigated. In the missing values problem, the heterogeneity in data 

patterns arises from the potential differences between the observable and 

unobservable information. In dynamic changing data environments, the heterogeneity 

stems from the fact that the model developed using the source data may no longer fit 

the unseen target data (i.e., the source data is different to the target data).    

Missing values are unobservable information in our databases. For example, 

respondents in a household survey may refuse to report income (Little and Rubin 
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2014); patients’ medical records may be subject to missing values since certain 

medical tests are not administered to all patients (Hall et al. 2007). In these examples, 

it is natural to treat the values that are not observed as missing, in the sense that there 

are actual underlying values that would have been observed if respondents made full 

disclosure during the survey or the medical tests had been administered.  

The fundamental problem with missing values is that it is not possible to 

know whether the unobserved missing values follow the same data pattern as the 

observed values. This results in uncertainty with various aspects of data analytics 

such as model specification and distributional assumptions. If the purpose of the data 

analysis is to uncover patterns for the overall data, using only the observed 

information will inevitably generate partial insights and may even distort the 

inferences we generate from the observed patterns. For instance, in estimating the 

average income for a consumer group, if the income variable is more likely to be 

missing when it is larger, then the estimated mean using the observed values would 

be downwardly biased. Therefore, given an incomplete data set, analysts need to 

consider and reflect on whether and how the missing values reshape the data pattern 

we observe.  

With the presence of dynamically changing data patterns, the source data, 

which often consists of historical records, may not represent the same data pattern as 

the target data, which involves the variable to be predicted but is realized in future 

unseen data. Data analytics heavily rely on statistical analysis (Chen et al. 2012). In 

traditional data analysis tasks, such as developing a prediction model using 

supervised machine learning, we use the source data to obtain a function or a 

prediction model that maps from predictors to the variable being predicted, and then 

apply the built model to target data to make predictions of future events or of 

variables of interest. This practice of data analytics assumes that the data being 

analysed follows a stable pattern (Pan and Yang 2010; Zhang et al. 2017).  
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In typical business environments, this assumption is violated more often than 

not. For instance, in predicting firms’ future earnings during recession periods, both 

the distribution of predictors and the functional relationship between predictors and 

the dependent variable is likely to change (Li and Mohanram 2014). Ignoring the 

potential changes in data pattern may jeopardize the validity of our models and the 

conclusions we draw from the data analysis.  

Throughout this dissertation, I hold the argument that the approximate nature 

of data analytics models must always be borne in mind and we should always be 

concerned about the often over-looked heterogeneity in data patterns and the 

mechanisms that influence what information is being observed and therefore what 

data patterns are uncovered. 

1.2 Challenges 

The heterogeneity in data patterns arising from missing values and changing data 

patterns is difficult, if not impossible, to be examined directly. This is due to limited 

or even no information that can be used in understanding how the data patterns might 

have changed from observed to unobserved information, or between the source data 

and target data. In the missing values problem, to investigate whether and how the 

unobserved information is different to the observed information, we can run a 

statistical test, such as the mean difference test, between the observed and unobserved 

values. However, the unobserved values are unknown in the first place. In dynamic 

changing environments, even if it is strongly suspect that we have entered into a new 

data regime due to a change in policy or changes in the economic environment, we 

have little information in identifying and quantifying the changes in the data patterns 

at the early stages of the new data regime. 

Perhaps one of the most reliable and rigorous ways to identify the 

heterogeneity in data patterns is to use interventions to expand the available 

information, such as gathering the underlying truth of missing values (Glynn et al. 
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1993), and obtaining more data examples for the target domain (Pan and Yang 2010). 

However, the interventions or additional data collection are often cost prohibitive or 

even impossible in some data analytics contexts. For instance, to unveil the missing 

values in patients’ health record, additional medical tests could be administered; 

however, medical resources are often limited (Zhang et al. 2005). In dynamic data 

environments, since data generation takes place in the business environment (rather 

than in a controlled laboratory setting), analysts may not actively collect data but 

rather wait to see additional information generated in the new data regime. Thus, 

there emerges a trade-off between sparse information and lagged response. 

Given the practical difficulties in augmenting the data, research attention has 

been focused on how to enhance the validity and viability of statistical models using 

the available observational data. The open problems still include the design of 

theoretically and computationally appropriate methods that apply to more general 

situations so that analytics methods would be more robust to the difficult-to-be-

observed heterogeneity in data patterns. Moreover, the methods should be able to 

capture what pieces of information are useful to depict the underlying process and 

find out the ways to employ such information in business analytics contexts. 

1.3 Research Objectives and Methods 

Researchers have long been exploring how the often-over-looked heterogeneity in 

data patterns influences the validity of research results. To solve such problems, one 

needs to gain insights into the underlying process behind the given data. Both the 

missing values and the data mining literatures encompass different perspectives to 

explore this problem. In this section, I provide an overview of the problems being 

investigated, motivate research objectives by identifying research gaps, and describe 

research methods employed in my thesis. 
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1.3.1 Handling Missing Values Not at Random 

The missing values problem is ubiquitous in many application contexts. For instance, 

in electronic commerce, customers frequently neglect to provide ratings for products 

they have purchased and consumed (Ying et al. 2006), which results in missing 

values for product recommendation systems. In survey-based empirical research, 

researchers often have to deal with missing values (i.e., skipped responses) for certain 

items in their questionnaires (Sivo et al. 2006). Even empirical research using firm-

level archival databases such as Compustat (e.g., Havakhor et al. 2019) frequently 

encounter missing values for certain important data fields such as research and 

development (R&D) expenses (Koh and Reeb 2015). 

Missing values introduce two potential problems in statistical analysis – 

information loss and biasedness. Information loss is an obvious outcome. From a 

statistical perspective, it is reflected by increased variance (uncertainty) of statistical 

estimates compared to the estimates that would have been obtained if there were no 

missing values.1 Biasedness typically arises when the observed values differ 

systematically from the unobserved missing values. For instance, in the simple 

estimation of the mean of a variable, if the variable is more likely to be missing when 

it is larger, then the estimated mean using the observed values would be downwardly 

biased. Even though the volume of data is often sufficiently large (or even excessive) 

in today’s big data environment, minimizing information loss is still a common 

challenge in data analytics. Moreover, biasedness (or inconsistency) arguably raises 

much greater concerns for data analysts since it cannot be resolved by simply 

increasing the sample size. 

Among various methods for handling missing values, the traditional and one 

of the most popular methods is case deletion (also known as listwise deletion, or 

 
1 Little and Rubin (2014, in Chapter 3.2), define metrics to measure the proportional increase 
in variance from the loss of information.  
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complete-case analysis), where incomplete records or observations are simply 

discarded. The main virtue of case deletion is its simplicity. However, researchers 

need to be cautious against whether case deletion will bias statistical estimation and 

subsequently lead to incorrect inferences. Consider the estimation of the parameters 

of the regression of 𝑦𝑦 on 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 from data with missing values on 𝑦𝑦 and/or 𝑥𝑥s, 

and assume that the regression function is correctly specified. If the probability of 

being a complete case depends on 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 but not 𝑦𝑦, then estimates of the 

regression coefficients after case deletion will not be subject to bias. However, the 

same cannot be said with respect to other measures of association between 𝑦𝑦 and the 

𝑥𝑥s such as correlation coefficients (Schafer and Graham 2002). Moreover, case 

deletion results in biased estimation of regression coefficients if the probability of 

being a complete case depends on 𝑦𝑦 conditional on the covariates 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 (Little 

and Rubin 2014, Chapter 3.2).  

In the past several decades, there have been active efforts in the statistics 

literature seeking to minimize the biasedness introduced by missing values. To better 

understand the mechanisms of missing values, Rubin (1976) formally identified three 

scenarios for the mechanisms of missing values – 1) missing completely at random 

(MCAR), where the missingness  does not depend on any variable, 2) missing at 

random (MAR), where the missingness does not depend on the incomplete variable 

with missing values but can depend on variables without missing values, and 3) not 

missing at random (NMAR), where the missingness depends on the incomplete 

variable with missing values after conditioning on variables without missing values. 

Under the MCAR mechanism, case deletion estimates are generally valid (i.e., 

unbiased).  However, missing values generally become problematic and result in non-

ignorable bias when the underlying mechanism of missing values is MAR or NMAR, 

since the observed values and the unobserved ones follow different data distributions.  

Under the MAR assumption, two broad approaches have been widely 
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acknowledged to be appropriate (e.g., Allison 2009; Newman 2014; Schafer and 

Graham 2002) – maximum likelihood estimation and multiple imputation. Maximum 

likelihood estimation is shown to be consistent and approximately efficient under 

MAR and valid joint distributional assumption of all the variables in the data matrix 

(Dempster et al. 1977; Rubin 1976). Theoretically, multiple imputation generates 

consistent estimations and have high asymptotic efficiency in large samples with 

proper Bayesian sampling approaches (Rubin 1987, p. 131).  

Unfortunately, the theoretical properties of maximum likelihood estimation 

or multiple imputation cannot be ensured under the NMAR mechanism. Numerical 

results from simulations show that maximum likelihood and multiple imputation 

could lead to biased estimations under NMAR (Schafer and Graham 2002). Thus, the 

key remaining challenge in the missing data literature is how to handle missing data 

without restrictive assumptions on the mechanism of missing values. In recent years, 

we have seen newer developments for dealing with missing data that are NMAR. 

However, research results for NMAR are not quite as mature as those for MAR. If we 

cannot assume a MAR mechanism, additional (restrictive) assumptions of the 

mechanism of missing data, such as requiring the parameters of the missingness 

mechanism to be known (Kim and Yu 2011; Rotnitzky et al. 1998), often need to be 

imposed. However, to satisfy this requirement, unless the missingness mechanism is 

under control, analysts need to conduct additional follow up studies (Kim and Yu 

2011), which is typically infeasible in data analytics practice.2 

Motivated by this research gap, the research objective of the first study is to 

develop approaches that can deal with missing values under the NMAR mechanism 

without pre-specifying the parameters of the missingness mechanism. Since missing 

 
2 Recent studies propose data masking mechanisms for protecting users’ information privacy 
(e.g., Banholzer et al. 2018; Li and Sarkar 2011). These mechanisms can be similarly used to 
control the missingness mechanism by which sensitive information is concealed. However, in 
many practical data analytic tasks, the missingness mechanism may not be under the control 
of analysts and the corresponding parameters are often unknown. 
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values are ubiquitous in both business analytics practice and empirical academic 

research, wherein the former often targets for predictive accuracy and the latter aims 

at obtaining unbiased statistical inference (Shmueli and Koppius 2011), I develop 

approaches along two sub-objectives.  

The first sub-objective is to enhance the imputation accuracy of missing 

values for data analytics tasks. To achieve this goal, I propose a missing value 

imputation method built upon a semi-supervised learning strategy which employs 

both complete records and incomplete records for missing value imputation. In this 

study, I demonstrate the reduction of imputation error from my proposed method 

through theoretical and simulation analysis. Moreover, the imputation accuracy of the 

proposed method is indirectly shown in two real-world applications – the prediction 

of credit defaults and earnings. By imputing the important predictor variable for each 

of the two applications, the proposed method generates higher prediction accuracy 

compared to benchmark imputation approaches based on different machine learning 

methods. The second sub-objective is to correct the bias caused by missing values 

during the estimation of regression coefficients. I propose to employ a Monte Carlo 

Likelihood approach to obtain coefficient estimation in linear regression model with 

missing values. By incorporating the missingness mechanism into the coefficient 

estimation process, the Monte Carlo Likelihood approach can generate unbiased 

estimation under different missingness mechanisms including the NMAR mechanism.  

The missing values problem, like the sample selection problem or others alike 

that may incur biasedness, is still undergoing extensive research. I expect that by 

providing theoretical analyses, results from simulations, and insights from real-world 

applications, data analysts will be able to better appreciate the potential bias caused 

by missing values, which will motivate more rigorous research designs to minimize 

the occurrence of missing values, or to obtain more information on the mechanisms of 

missing values when incomplete / missing data is inevitable. 
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The concept of missingness mechanism has a similar statistical origin with 

the sample selection model which will be used in the second essay. That is, data from 

different patterns can be discriminated by an underlying probabilistic mechanism. 

Incorporating this mechanism makes the data analysis results more robust to the 

heterogeneity in data patterns. 

1.3.2 Adapting Statistical Learning in Dynamic Data Environments 

As machine learning algorithms become more sophisticated, they have attracted much 

attention from information systems researchers and decision-making practitioners 

(Chen et al. 2012; Chiang et al. 2018). In machine learning, data is used to find 

interdependences in the world, with the goal of predicting future outcomes. In 

particular, in the supervised machine learning setting, we use historical data to learn 

the relationship between the predictor variables (often denoted with 𝒙𝒙) and the 

variable to be predicted (often denoted with 𝑦𝑦). This relationship is typically denoted 

with a function 𝑓𝑓(𝒙𝒙;𝜽𝜽) that maps from 𝒙𝒙 to 𝑦𝑦, where 𝜽𝜽 are parameters to be 

estimated from historical data. Then function 𝑓𝑓(𝒙𝒙;𝜽𝜽) is used to predict future 𝑦𝑦 based 

on currently observed values of 𝒙𝒙.  

Although machine learning is able to learn more complex relationship than 

traditional data analytics, as highlighted by Schölkopf (2017), the relationship 

uncovered by machine learning may not be robust to changes in real world datasets 

(Zhang et al. 2013). A simple solution to adapt to changes in the data pattern is to 

ignore all the historical source data and to retrain the machine learning model from 

scratch using the current data in the target data regime. However, current data is 

scarce at the early stage of the new data regime. The data sparsity becomes a critical 

concern in obtaining a reliable model for the new data regime especially since many 

machine learning models rely heavily on large amounts of data. 

To take on this challenge, a new subfield of machine learning called transfer 



10 

 

learning has emerged.3 The vision of transfer learning is to extract knowledge from a 

source data set and to apply that knowledge to a target data set. Given that only a 

small amount of the source data will exhibit the same data pattern as the target data 

(i.e., same-distribution source data), transfer learning aims at balancing the usage of 

the small amount of same-distribution source data and the often-large but less 

relevant source data that follows a data pattern different from the target data (i.e., diff-

distribution source data).  

Different methods have been proposed to balance the usage of source and 

target data. However, these studies often focus on the situation where the distribution 

of predictors changes across the source and target data while the relationship between 

predictors and the variable to be predicted is assumed to be fixed, a situation known 

as transductive transfer learning or as the covariate drift problem (Huang, Gretton, 

Borgwardt, Schölkopf, & Smola, 2007; Zadrozny, 2004). For the more general 

inductive transfer learning problem (Pan and Yang 2010), where both the distribution 

of predictors and the functional relationship change, the extant literature is relatively 

immature. Dai et al. (2007) develop a TrAdaBoost classifier for inductive transfer 

learning to exploit the same-distribution source data, and Pardoe and Stone (2010) 

extend this approach to regression problem. TrAdaBoost adjusts the iterative process 

of the popular AdaBoost algorithm, by increasing the weights of same-distribution 

source data and decreasing the weights of the remaining diff-distribution source data, 

which is consistent with our intuition in using all of the source data. However, as 

pointed out by the authors, TrAdaBoost does not guarantee to always improve upon 

AdaBoost, since the quality of diff-distribution source data is not certain. 

Motivated by this research gap in the extant literature on transfer learning, the 

first objective of the second essay is to design a theoretically driven transfer learning 

 
3 According to ACM Computing Classification System (CCS 2012), transfer learning is a 
subfield of multi-task learning within machine learning paradigms. 
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method that aims at improving prediction performance on the target data. In 

changing data environments, an open question is how to represent changes. If we had 

information on how the data pattern changes (e.g., ideally complete information on 

how the distribution of variables changes), we can then adjust the model to the 

desired direction to the future data pattern. I propose a sample selection perspective to 

approximate changes in terms of a general inductive transfer learning problem. An 

underlying sample selection model is used to represent the probability that a data 

point represents a data pattern different from the target data given its values of 

predictors and the value to be predicted. Based on the probability, I derive a 

weighting approach to adjust the prediction model trained on the source data to let it 

fit the target data. The proposed method is theoretically driven by empirical risk 

minimization (ERM) for the target data distribution. 

Sample selection models are widely used in improving causality 

identification (Heckman, 1979). Although data analytics for prediction do not aim at 

identifying causality (Shmueli and Koppius 2011), the sample selection perspective 

has been preliminarily adopted in transductive transfer learning studies (e.g., 

Zadrozny 2004) and helps to derive more robust model when there is potential 

heterogeneity in different data sets. In particular, the sample selection model provides 

the theoretical guidelines in driving the weighting method that minimizes empirical 

risk in the target data. 

Another gap in the literature is that, although different transfer learning 

algorithms have empirically demonstrated successful implementation in changing 

data environments (Ganin et al., 2016; Pan, Zheng, Yang, & Hu, 2008), there is a lack 

of theoretical understanding on when and to what extent transfer learning works. By 

building on the sample selection perspective, another objective of the second essay is 

to gain theoretical insights into when and to what extent transfer learning works in 

changing data environments. 
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In practical applications, when changes are detected, analysts face the trade-

off between two alternative strategies – 1) to re-train a model using a small but more 

relevant same-distribution source data set, or 2) to use transfer learning and leverage a 

larger sample of source data that may include some relevant same-distribution data 

and some diff-distribution source data. This is analogous to the fundamental bias-

variance trade-off. Moreover, this challenge arises due to the scarcity of useful 

information on data heterogeneity, i.e., the same-distribution source data, as discussed 

in Section 1.2. Therefore, analysts can naturally consider waiting for a time period 

and to incorporate more same-distribution source data to train a more accurate model 

for the target task. However, this benefit comes at the cost of deteriorating prediction 

performance before the model adjustment is made. Therefore, another trade-off faced 

by analysts is with the time dimension – whether to make an adjustment immediately 

or at a later time point until more same-distribution source data becomes available. 

These two tradeoffs are examined through a simulation study conducted in a change 

detection context. Theoretical insights obtained in the second essay help to promote 

proper use of transfer learning and the understanding on challenges of statistical 

learning in real-world changing data environments. 

Overall, the two studies in my dissertation investigate fundamental problems 

in data heterogeneity arisen from missing values and dynamic data environment. In 

the first essay on the missing values problem, the missing value mechanism is the 

device that models the latent mechanism that influences the data pattern we obtain 

based on the observed information. In the second essay on changing data 

environments, I adopt the sample selection perspective to reflect changes across 

source and target data. Moreover, in dynamic data environments, I examine the trade-

offs in augmenting usable information within the context of data pattern change 

detection.  
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1.4 Outline of the Dissertation 

This chapter (Chapter 1) has introduced the research background of the dissertation, 

highlights ongoing data analytics challenges with respect to the missing values 

problem and to dynamism in data environments, and identifies the research gaps.  

Chapter 2 presents the first study of the dissertation. It provides a 

comprehensive review of the existing missing values literature and proposes 

approaches to handle missing values while accounting for the missingness 

mechanism. The proposed semi-supervised missing value imputation method 

demonstrates enhance imputation accuracy through theoretical analysis, simulation 

and real-world experimentation. The proposed computational approach using a Monte 

Carlo likelihood estimation method is able to correct biases caused by missing values. 

Chapter 3 contains the second study of the dissertation. It reviews the 

literature on change detection and transfer learning that are related to dynamic data 

environments. I propose a sample selection framwork for the general inductive 

transfer learning problem. In the systematic simulation work, we show the 

effectiveness of transfer learning under different settings of dynamic data 

environments.  

Finally, chapter 4 concludes the dissertation with a discussion on the 

contribution of the studies and directions for future research. 
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CHAPTER 2  HANDLING MISSING VALUES WITHOUT ASSUMING 

MISSING AT RANDOM  

2.1 Introduction 

Advances in data mining and machine learning technologies create new opportunities 

for information systems researchers and practitioners. However, in spite of the widely 

deployed information systems that are able to create large volumes of data for 

analytics (i.e., “big data”), a fundamental data challenge that persists is the missing 

values problem. For instance, in healthcare practice, paper-based medical records 

may not be digitized completely and successfully, which results in missing values in 

electronic health records (Baird et al. 2017). In finance, accounting or strategy 

studies, data on research and development (R&D) expenses is missing in 42% of the 

financial reports of NYSE-listed firms (Koh and Reeb 2015). As another example, in 

safety management research, over ninety percent of variables in aviation safety 

reporting systems contain missing values to varying extents (Shi et al. 2017). 

Compared to the prevalence of missing values, methodological studies regarding how 

to handle missing values are still left with many limitations. 

In a seminal study, Rubin (1976) developed a typology of missingness 

mechanisms, which captures the relationship between the missingness indicator and 

the variables in the data matrix.4 Three types of missingness mechanisms are defined 

as follows. The first type is missing completely at random (MCAR), where the 

missingness indicator does not depend on any variable. The second type is missing at 

random (MAR), where the missingness indicator does not depend on the incomplete 

variable with missing values but can depend on variables without missing values. The 

 
4 The missingness is defined as an indicator variable. It equals one if the incomplete variable 
is observed and zero otherwise. The data matrix is a rectangular data set. Traditionally, the 
rows of the data matrix represent records, also called observations or instances, and the 
columns represent variables, also called features, that are measured for each record. To be 
consistent in terminology, we refer to the rows as records and the columns as variables. 
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third type is the most general case, not missing at random (NMAR), where the 

missingness indicator depends on the incomplete variable with missing values after 

conditioning on variables without missing values. Under the MCAR mechanism, case 

deletion estimates are generally valid.  However, missing values generally become 

problematic when the underlying mechanism of missing values is MAR or NMAR. 

Most of the existing literature, as will be discussed in the literature review section 

below, assumes MAR as the missingness mechanism. 

Unfortunately, in many real-world data sets, the MAR assumption may not 

hold. For instance, in online recommendation systems, early buyers self-select 

products that they believe they would enjoy, thus the reviews we observed in the 

buyer-product matrix can be biased (Li and Hitt 2008). In healthcare research, 

albumin values are NMAR, since the albumin test is more accessible to sicker 

patients (Hall et al. 2007). Failing to accommodate the NMAR mechanism results in 

biased estimates that lead to suboptimal or even erroneous predictions or inferences 

(Little and Rubin 2014, p. 18). For instance, in the simple estimation of the mean of a 

variable, such as information technology investment, if the variable is more likely to 

be observed/reported when it has a larger value, then the estimated mean using the 

observed values would be upwardly biased.  

Recently, statisticians have started to seriously consider NMAR. However, to 

handle the NMAR mechanism, additional (restrictive) assumptions are often imposed. 

For instance, Kim and Yu (2011) require the parameters of the missingness 

mechanism to be known. However, in many practical data analytic tasks, the 

missingness mechanism may not be under the control of analysts and the 

corresponding parameters are often unknown. Motivated by this research gap, we 

develop approaches to handle missing values that are robust to the NMAR 

mechanism without pre-specifying parameters of the missingness mechanism.  

Handling missing values for the purpose of business analytics practice and 
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empirical academic research tends to have different focus, since the former often aims 

at obtaining high predictive accuracy using machine learning algorithms, and the 

latter often aims at obtaining unbiased coefficients in regression analysis (Shmueli 

and Koppius 2011). Therefore, in this chapter, we develop approaches along two sub-

objectives.  

The first sub-objective is to develop a missing value imputation approach 

focusing on enhancing imputation accuracy for data analytics tasks. To enhance 

imputation accuracy, we propose a missing value imputation method based on a semi-

supervised learning strategy. With traditional imputation methods using supervised 

learning, the relationship, such as a simple linear relationship, between the incomplete 

variable and other complete variables are modeled using the complete records. To 

capture the potentially complex relationship and to achieve accurate imputation, 

machine learning algorithms can be applied. Different machine learning algorithms 

have been employed in the data analytics literature, such as decision tree, Bayesian 

method, linear regression, neural networks, SVM, and random forest (Ding and 

Simonoff 2010; Farhangfar et al. 2008; García-Laencina et al. 2010; Li 2009; Luengo 

et al. 2012; Saar-Tsechansky and Provost 2007; Stekhoven and Bühlmann 2012). 

This relationship is then applied to the incomplete records to impute missing values 

of the incomplete variable.  

Compared to supervised imputation where only complete data records are 

used to infer the relationship between the incomplete variable and complete variables, 

semi-supervised imputation may make use of the incomplete data records as well. In 

this way, we make use of all available information and more importantly, this allows 

us to explicitly model the NMAR missingness mechanism. After all, with only the 

complete data records, the missingness indicator will always be equal to one. By 

incorporating the incomplete data records, it is possible to model the variation of the 

missingness indicator which is explained by the missingness mechanism. Therefore, 
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an important contribution of our method is to incorporate the NMAR missingness 

mechanism into the traditional imputation process through a semi-supervised learning 

wrapper. From a probabilistic view, we formally define the missing values problem 

and analytically demonstrate that the proposed method can enhance imputation 

accuracy over traditional methods which impute missing values by supervised 

learning methods and assume MAR.  

We demonstrate the performance of our method using both simulations and 

real-world applications. With simulations, we show that our approach achieves higher 

imputation accuracy under varying missingness mechanisms and percentages of 

missing values of the incomplete variable. In the real-world applications, we employ 

two data sets. The first data set is drawn from a Kaggle competition of home credit 

default prediction.5 The task of this competition is to predict whether each applicant 

will repay his/her loan given the applicant’s records. In this data set, an important 

predictor variable, the credit score from a third-party credit rating agency, is missing 

for 56% of the applicants because only a previously approved loan applicant with 

good credit could be assessed using credit scores (Abdou and Pointon 2011; 

Verstraeten and Van den Poel 2005). In the second application, the task is to predict 

the quarterly earnings of US-listed firms based on their financial statements and 

analyst forecasts. In this data set, the analyst consensus forecast is missing for 40.7% 

of the observations because analyst consensus forecast is often not available for small 

firms and financially distressed firms (Diether et al. 2002). Given the possible NMAR 

mechanism in the two data sets, we impute the target incomplete predictor variables 

with our proposed method. Results show that our semi-supervised imputation method 

provides more accurate predictions compared to the traditional imputation methods, 

including support vector machine (SVM), random forest, and gradient boosting. 

The second sub-objective is to employ a Monte Carlo likelihood estimation 

 
5 See https://www.kaggle.com/c/home-credit-default-risk. 
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approach to alleviate the bias in estimating coefficients caused by missing values for 

empirical regression analysis. Researchers have historically handled missing values 

primarily by dropping the observations whose information is incomplete (called 

listwise deletion or complete case analysis) or by editing the data (e.g., substituting 

missing values with the mean of the variable in question or even with zeros) to lend 

an appearance of completeness. However, such handling of missing values may lead 

to inference problems where incorrect conclusions are drawn from the analysis. 

Extant literature has well demonstrated that, under the MAR mechanism, two broad 

approaches, Maximum Likelihood (ML, Rubin 1976; Dempster et al. 1977) and 

Multiple Imputation (MI, Rubin 1987) provide consistent parameter estimation. 

However, these two approaches would lead to bias when the missingness mechanism 

is NMAR.  

To accommodate the NMAR mechanism, we propose a computational 

approach using a Monte Carlo likelihood estimation method. Our method generates 

unbiased estimation for regression coefficients under different missingness 

mechanisms. Our proposed method is built upon recent theoretical advances showing 

that for certain types of model specifications, parameters can be identified using 

maximum likelihood estimation incorporating the NMAR mechanism (Miao et al. 

2016). Monte Carlo likelihood estimation has been employed in a variety of 

maximum likelihood estimation problems where the likelihood function is difficult to 

be calculated directly due to missing values under the MAR mechanism (Sung and 

Geyer 2007) or when latent variables are involved (Booth and Hobert 1999). We 

extend the application to the NMAR situation and provide evidence of its superior 

performance in parameter estimation with simulation study. 

In summary, challenges in deploying advanced data analytics to outperform 

competitors exist in every aspect of analytics such as data collecting and processing 

(Chiang et al. 2018; Clark and Provost 2016). Moreover, biasedness (or 
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inconsistency) caused by missing values, raises great concerns in both data analytics 

practice and empirical research since it cannot be resolved by simply increasing the 

sample size. Our missing value handling approaches offer important theoretical and 

practical contributions. The main contribution is that both proposed approaches are 

among the very few studies that handle the missing values problem without assuming 

a MAR mechanism. The semi-supervised imputation approach focuses on enhancing 

the imputation accuracy of supervised imputation using different machine learning 

algorithms, which will contribute to data analytics practice in missing value handling. 

The Monte Carlo likelihood estimation is based on established statistical theory and 

focuses on correcting biases in estimating regression coefficients caused by missing 

values. The improvements, in terms of both imputation accuracy in predictive data 

analytics and bias correction in empirical regression analysis, are achieved by 

explicitly modeling and estimating the missingness mechanism, which makes the 

approach more robust to the NMAR mechanism. By providing theoretical analyses, 

results from simulations, and insights from real-world applications, our research will 

motivate more rigorous data collecting and analyzing process to minimize the 

occurrence of missing values, or to obtain more information on the mechanisms of 

missing values when incomplete / missing data is inevitable. 

2.2 Relevant Literature 

A large number of scholarly works in the statistics and machine learning literatures 

have examined the missing values issue. In this section, we first review a typology of 

missingness mechanisms proposed in a seminal study by Rubin (1976): MCAR, 

MAR, and NMAR. Then we introduce the well-established statistical models for 

handling missing values. Finally, we present a brief overview of semi-supervised 

learning as it is related to the proposed approaches especially the semi-supervised 

learning approach to imputing missing values.  
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2.2.1 Typology of Missingness Mechanism 

Let the variables in the data set be (𝑧𝑧, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) where 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑘𝑘 are 𝑘𝑘 

complete variables without missing values 𝑧𝑧 is the incomplete variable with missing 

values. Let 𝑠𝑠 be the missingness indicator for 𝑧𝑧, where 𝑠𝑠 = 1 if 𝑧𝑧 has a value and 𝑠𝑠 =

0 otherwise. To be concise, we let vector 𝒙𝒙 denote all the complete variables, namely, 

𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑘𝑘).  

The missingness mechanism model is often described with a conditional 

probability function of the missingness indicator 𝑠𝑠 given values of 𝑧𝑧 and 𝒙𝒙, which is 

denoted by: 

 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍), (2.1) 

where 𝝍𝝍 is the unknown parameter in the probability function. A concrete example of 

the missingness mechanism is the logistic model, where 𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧,𝒙𝒙;𝝍𝝍) =

1
1+𝑒𝑒−(𝜓𝜓0+𝜓𝜓1𝑧𝑧+𝝍𝝍2𝒙𝒙). 

All records in the data set are assumed to be independently and identically 

distributed (i.i.d.). The three types of missingness mechanisms are defined as follows: 

(1) MCAR is defined as 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) = 𝑝𝑝(𝑠𝑠;𝝍𝝍). Under this mechanism, 𝑠𝑠 

does not depend on any variable of the data set. 

(2) MAR is defined as 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) = 𝑝𝑝(𝑠𝑠|𝒙𝒙;𝝍𝝍). Under this mechanism, 𝑠𝑠 

depends on 𝒙𝒙 but does not depend on 𝑧𝑧. 

(3) The most general mechanism is NMAR. Under this mechanism, 𝑠𝑠 

depends on both 𝒙𝒙 and 𝑧𝑧. In other words, 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) = 𝑝𝑝(𝑠𝑠|𝒙𝒙;𝝍𝝍) does not 

hold. 

Among the various methods for handling missing values, the most frequently 

used is listwise deletion, where incomplete records or observations are simply 

discarded. The main virtue of listwise deletion is its simplicity. Under the MCAR 
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mechanism, listwise deletion estimates are generally valid.  However, missing values 

generally become problematic when the underlying mechanism of missing values is 

MAR or NMAR. Consider the estimation of the coefficients of the regression of 𝑦𝑦 on 

𝑧𝑧 and 𝒙𝒙, and assume that the regression function is correctly specified. If the 

probability of being a complete case depends on 𝑦𝑦 (in this case, the missingness 

mechanism is MAR and may even be NMAR if the missingness also depends on 𝑧𝑧), 

then listwise deletion will result in biased estimates of the regression coefficients 

(Little and Rubin 2014, Chapter 3.2). Moreover, listwise deletion leads to a loss of a 

large amount of information contained in the incomplete records. Suppose that 𝑧𝑧 is 

missing in 50% of the data records, listwise deletion leads to a loss of almost half of 

the information, which largely reduces the efficiency of information usage. In the 

next subsection, we review the statistical models to deal with missing values under 

various mechanisms of the missingness typology. We especially focus on the methods 

under the MCAR and the MAR mechanisms given the relatively mature statistical 

theories. 

2.2.2 Statistical Models for Handling Missing Values 

Under the MCAR and MAR mechanisms, two broad approaches, maximum 

likelihood and multiple imputation, have been acknowledged by statisticians to derive 

less biased estimations than traditional missing value handling approaches, such as 

list-wise deletion and mean imputation (Allison 2009; Newman 2014; Schafer and 

Graham 2002).  

The maximum likelihood approach is shown to be approximately efficient 

under MAR and valid joint distributional assumption of all the variables in the data 

matrix (Dempster et al. 1977; Rubin 1976). However, to be useful in practice, the 

maximum likelihood method requires careful algebraic manipulations and efficient 

programming. Much research efforts have been devoted to the task of maximizing the 
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objective likelihood function. Little and Rubin (2014, Chapter 8), provide a review of 

methods for maximizing the likelihood function. 

To implement maximum likelihood for missing data, one needs to assume a 

joint distribution for all variables (including 𝑧𝑧 and 𝒙𝒙) and to select an optimization 

method for maximizing the observed data likelihood and obtaining the parameters’ 

estimations. Maximum likelihood estimates can be directly found by differentiating 

the likelihood with respect to the parameters of interest and then obtaining estimates 

by letting the resulted first order condition equal to zero. However, it is often difficult 

to obtain such estimates directly. Therefore, an iterative method that is 

computationally simple and feasible, such as the expectation maximization (EM) 

method (Dempster et al. 1977),6 is often used to obtain the maximum likelihood 

estimate. The EM algorithm formalizes a relatively old ad hoc idea for handling 

missing data: (1) replacing missing values by estimated values, (2) estimating 

parameters, (3) re-estimating the missing values assuming the new parameter 

estimates are correct, (4) re-estimating parameters, and so forth, iterating until 

convergence. A detailed description of the EM algorithm for maximum likelihood 

estimation with missing values is presented in Appendix 1.1.1. 

(Bayesian) Multiple Imputation (MI), proposed by Rubin (1987), is a flexible 

alternative to maximum likelihood methods. Multiple imputation theoretically 

generates consistent estimations in large samples and with a proper Bayesian 

sampling approach (Rubin 1987, p. 131). Moreover, the imputed data sets created by 

the multiple imputation approach can be easily used for subsequent data analysis 

(Melville and McQuaid 2012). However, current multiple imputation methods often 

 
6 It is acknowledged that similar idea had been proposed in earlier study (e.g., Hartley 1958). 
As illustrated by Dempster et al. (1977), application of the EM method is not limited to the 
missing data issue. Problems that can be conquered by EM are remarkably broad, such as 
grouped, censored or truncated data, finite mixture models, variance component estimation, 
hyperparameter estimation, iteratively reweighted least squares and factor analysis. 
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need to assume MAR, a normal distribution for the incomplete variable, and a prior 

distribution for the parameters of interest (Schafer 1997). 

To implement this method, ideally, the analyst should draw multiple 

imputations according to the following protocol (Little and Rubin 2014, p. 86). The 

multiple imputations (e.g., 𝑚𝑚 imputations) of the missing component of the variable 

𝑧𝑧, say 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, are 𝑚𝑚 repetitions from the posterior predictive distribution of 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚; each 

repetition corresponds to an independent random draw of the parameters and missing 

values. After the 𝑚𝑚 sets of imputations are generated, the analyst obtains the 

estimates of parameters in each data set using standard complete-data estimation 

methods and then combines the estimates obtained from the multiple imputed data 

sets using a simple method. Details for implementing multiple imputation are 

presented in Appendix 1.1.2.  

Although maximum likelihood and multiple imputation are established 

methods with theoretical results, the MAR assumption required by these two methods 

may not hold in real-world data sets. For example, in online marketing analytics, 

customers may provide review ratings only for products that they either like or dislike 

very much (Ying et al. 2006); in healthcare analytics, albumin values are less likely to 

be missing for sicker patients (Hall et al. 2007). Failing to accommodate NMAR 

would result in biased estimates (Little and Rubin 2014, p. 18). Recently, statistical 

models have emerged to consider NMAR. However, these studies either assume a 

joint distribution of variables (Ibrahim et al. 1999) or impose assumptions such as 

requiring the parameters of the missingness mechanism to be known (Kim and Yu 

2011).7 In this study, we incorporate the missingness mechanism into the likelihood 

function. Moreover, compared with the existing maximum likelihood methods for 

 
7 Recent studies propose data masking mechanisms for protecting users’ information privacy. 
(e.g., Banholzer et al. 2018; Li and Sarkar 2011). These mechanisms can be similarly used to 
control the missingness mechanism by which sensitive information is concealed. However, in 
many practical data analytic tasks, the missingness mechanism may not be under the control 
of researchers and the corresponding parameters are often unknown. 
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handling missing values, we do not impose the assumption of joint distribution for all 

variables. 

2.2.3 Semi-Supervised Learning 

To accomplish the goal of enhancing missing value imputation accuracy, we employ 

a semi-supervised learning approach to incorporate the NMAR missingness 

mechanism into the traditional imputation process. Unlike supervised learning which 

only uses the training set, the key idea of semi-supervised learning is to use both the 

training set and the test set to build a functional model (Hosmer Jr 1973; McLachlan 

1977).  

Before we introduce semi-supervised learning, we first describe how 

supervised learning can be used to handle missing values. Let us consider the scenario 

of imputing the incomplete variable 𝑧𝑧 using other completely observed variables 𝒙𝒙. In 

the following discussion, we divide the data set into two portions: (1) the “complete 

records” where the focal incomplete variable 𝑧𝑧 is not missing (analogous to the 

training set), and (2) the “incomplete records” where the focal incomplete variable 𝑧𝑧 

is missing (analogous to the test set). In the traditional imputation approach based on 

supervised learning, analysts can use the complete records to build an imputation 

model that captures the relationship mapping from 𝒙𝒙 to 𝑧𝑧; and then this imputation 

model is used to estimate (i.e., impute) missing values in the incomplete records.  

In this section, we adopt a general probabilistic view to describe the semi-

supervised learning strategy. In the above scenario with missing values, 𝒙𝒙 and 𝑧𝑧 are 

the variables of interest, thus both supervised and semi-supervised learning strategies 

aim at estimating a joint distribution of complete variables 𝒙𝒙 and the incomplete 

variable 𝑧𝑧, indicated as follows: 

 𝑓𝑓(𝒙𝒙, 𝑧𝑧;𝝎𝝎), (2.2) 

where 𝝎𝝎 is the vector of unknown parameters in the probability density function. 
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The supervised learning strategy estimates parameter 𝝎𝝎 using the training set. 

To be specific, 𝝎𝝎 can be solved by maximizing the log-likelihood in the following 

equation: 

 𝝎𝝎 = arg max𝝎𝝎  ∑ ln𝑓𝑓(𝒙𝒙𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝝎𝝎)𝑚𝑚
𝑖𝑖=1 , (2.3) 

where 𝑖𝑖 indexes each record and 𝑚𝑚 is the number of training records. After estimating 

parameter 𝝎𝝎 of the joint distribution of (𝒙𝒙, 𝑧𝑧), the unknown value of 𝑧𝑧 in the test set 

can be inferred from the predictor 𝒙𝒙 by maximizing the conditional distribution of 𝑧𝑧 

(Zhu and Goldberg 2009, Sect. 3.1), namely: 

 𝑓𝑓(𝑧𝑧|𝒙𝒙;𝝎𝝎) = 𝑓𝑓(𝒙𝒙,𝑧𝑧;𝝎𝝎)
𝑓𝑓𝒙𝒙(𝒙𝒙;𝝎𝝎) , (2.4) 

where 𝑓𝑓𝒙𝒙(𝒙𝒙;𝝎𝝎) denotes the marginal density function of 𝒙𝒙, which is the integration of 

the joint distribution 𝑓𝑓(𝒙𝒙, 𝑧𝑧;𝝎𝝎) with respect to 𝑧𝑧. 

The semi-supervised learning strategy uses both the training and test sets. 𝝎𝝎 

is then solved by maximizing an alternative log-likelihood function as: 

 𝝎𝝎 = arg max𝝎𝝎  ∑ ln𝑓𝑓(𝒙𝒙𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝝎𝝎)𝑚𝑚
𝑖𝑖=1 + ∑ ln𝑓𝑓𝒙𝒙(𝒙𝒙𝑖𝑖;𝝎𝝎)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 , (2.5) 

where 𝑛𝑛 is the number of records in the test set.  

By leveraging the test set, the semi-supervised learning incorporates more 

information and generates more accurate estimation of 𝝎𝝎 under general assumptions.8 

In the next section, to enhance imputation accuracy and accommodate the NMAR 

missingness mechanism, we propose a semi-supervised missing value imputation 

approach which makes use of “complete records” and “incomplete records” 

simultaneously.  

 

 

 
8 The general assumptions are the semi-supervised smoothness assumption, the cluster 
assumption, the low-density assumption, and the manifold assumption (Balcan and Blum 
2010). 
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2.3 Proposed Approaches to Handling Missing Values without Assuming the 

MAR Mechanism 

This section formally introduces two approaches to handling missing values: a semi-

supervised approach for missing value imputation, and the Monte Carlo likelihood 

estimation for estimating regression coefficients with missing values.  

In presenting the semi-supervised imputation approach, we first introduce a 

conceptual framework of our semi-supervised imputation approach. Next, we 

demonstrate that the semi-supervised imputation framework is theoretically superior 

to the traditional supervised imputation framework that ignores the missingness 

mechanism. Finally, we propose a nonparametric method for implementing our 

imputation approach. This nonparametric extension complements the semi-supervised 

imputation framework so that the proposed semi-supervised imputation approach can 

be used to enhance the imputation accuracy of traditional supervised imputation 

based on machine learning algorithms.  

 The semi-supervised imputation framework is theoretically superior to the 

supervised imputation framework. However, the flexibility of nonparametric 

implementation with machine learning algorithms makes it challenging to derive solid 

theoretical property, such as the convergence property in parameter estimation. 

Although there is emerging literature exploring the maximum likelihood estimation 

involving the machine learning algorithm such as random forest (Athey et al. 2019), 

the related study is under exploration which would be a promising future research 

direction.  

To handle the missing values encountered during regression analysis, a 

theoretically grounded approach is in need to correct the bias in regression 

coefficients caused by missing value. This motivates us to leverage the Monte Carlo 

maximum likelihood estimation which is supported by the statistical literature on the 

identifiability of maximum likelihood estimation under the NMAR mechanism (Miao 
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et al. 2016). The Monte Carlo computation approach has been employed in a variety 

of maximum likelihood estimation problems where the likelihood function is difficult 

to be calculated directly due to missing values under the MAR mechanism (Sung and 

Geyer 2007) or when latent variables are involved (Booth and Hobert 1999). We 

develop and demonstrate the application of Monte Carlo maximum likelihood 

estimation to handle missing values under the NMAR mechanism. 

2.3.1 A Semi-Supervised Learning Approach to Missing Value Imputation 

2.3.1.1 Missing Value Imputation under the Semi-Supervised Learning 

Framework 

In the proposed method, we handle the situation where one variable contains missing 

values. Let 𝑧𝑧 be the incomplete variable with missing values, and vector 𝒙𝒙 denotes all 

the complete variables. Without loss of generality, we assume that the incomplete 

variable 𝑧𝑧 is a categorical random variable. Our theoretical inferences in Section 

2.3.1.2 can be generalized to the case of 𝑧𝑧 being a continuous variable. The 

imputation process for continuous incomplete variable 𝑧𝑧 is presented in Section 

2.3.1.3. The relationship between the incomplete variable 𝑧𝑧 given complete variables 

𝒙𝒙 is represented as a conditional probability function of the incomplete variable 𝑧𝑧 

given complete variables 𝒙𝒙, namely: 

 𝑞𝑞(𝑧𝑧|𝒙𝒙;𝜽𝜽), (2.6) 

where 𝜽𝜽 denotes unknown parameters of the conditional probability density function.  

Let 𝑠𝑠 be the missingness indicator for 𝑧𝑧, where 𝑠𝑠 = 1 if 𝑧𝑧 has a value and 𝑠𝑠 =

0 otherwise. The missingness mechanism is denoted as 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍). The proposed 

method enhances the imputation accuracy by incorporating the missingness 

mechanism into the imputation process. An overview of the proposed solution is 

provided below: 
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Step 1: We first predict and impute the missing values of 𝑧𝑧 using complete records. 

This step is like the traditional imputation process. Almost any classification 

algorithm can be used in this imputation step as long as the classification algorithm 

outputs the predicted probabilities of each possible value of 𝑧𝑧.  

Step 2: Given the predicted probabilities of each possible value of 𝑧𝑧, we use a unique 

likelihood function inspired by semi-supervised learning to estimate the model of the 

missingness mechanism described in Expression (2.1). 

Step 3: Given the results of Steps 1 and 2, we compute the final imputed value of 𝑧𝑧. 

Step 1: Traditional Imputation 

The typical goal of a traditional imputation method is to learn the conditional 

probability function of the incomplete variable 𝑧𝑧 given complete variables 𝒙𝒙 in 

Expression (2.6). From a probabilistic view, we estimate 𝜽𝜽 using the maximum 

likelihood method. Using a supervised learning framework, the maximum likelihood 

function for the imputation model in Equation (2.6) is given by: 

 𝐿𝐿𝑠𝑠(𝜽𝜽):  𝐿𝐿(𝒛𝒛𝐶𝐶|𝑿𝑿𝐶𝐶;𝜽𝜽) = ∏ 𝑞𝑞(𝑧𝑧𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽)𝑚𝑚
𝑖𝑖=1 , (2.7) 

where subscript 𝑖𝑖 indexes each record, and the superscript 𝐶𝐶 indicates that the data 

comes from the complete records. 𝒛𝒛𝐶𝐶 and 𝑿𝑿𝐶𝐶 denote the values of the incomplete 

variable and complete variables of the complete records, respectively. 𝑚𝑚 is the 

number of complete records. Let 𝜽𝜽∗ denote the optimal solution, which is derived by 

maximizing 𝐿𝐿𝑠𝑠. Given 𝜽𝜽∗, the imputed value 𝑧𝑧𝑖𝑖 of the incomplete record under the 

traditional imputation process can be solved as follows: 

 𝑧𝑧𝑖𝑖 = arg max𝑧𝑧 𝑞𝑞(𝑧𝑧|𝒙𝒙𝑖𝑖;𝜽𝜽∗), 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑛𝑛, (2.8) 

where 𝑛𝑛 is the number of complete records. 

One important limitation of the traditional imputation process under the 

supervised learning setting is that the missingness mechanism is completely ignored. 
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However, this step provides important intermediate results for us to derive the semi-

supervised learning solution. 

Step 2: Semi-Supervised Learning 

Motivated by semi-supervised learning, we incorporate the incomplete records into 

the maximum likelihood function as follows: 

𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍):  𝐿𝐿(𝒛𝒛𝐶𝐶 , 𝒔𝒔𝐶𝐶 , 𝒔𝒔𝐼𝐼𝐼𝐼|𝑿𝑿𝐶𝐶 ,𝑿𝑿𝐼𝐼𝐼𝐼;𝜽𝜽,𝝍𝝍) =  

 ∏ Pr(𝑧𝑧𝑖𝑖 , 𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽,𝝍𝝍) ∙ ∏ Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1

𝑚𝑚
𝑖𝑖=1 , (2.9) 

where the superscript 𝐼𝐼𝐼𝐼 indicates that the data comes from the incomplete records. 

𝑿𝑿𝐼𝐼𝐼𝐼 denotes the values of the complete variables in the incomplete records. 𝒔𝒔𝐶𝐶 and 

𝒔𝒔𝐼𝐼𝐼𝐼 are the values of the missingness indicator in the complete records and incomplete 

records, respectively. Namely, 𝒔𝒔𝐶𝐶 and 𝒔𝒔𝐼𝐼𝐼𝐼 are constant vectors of 1 and 0, 

respectively. 𝑛𝑛 is the number of incomplete records. Pr(𝑧𝑧𝑖𝑖 , 𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽,𝝍𝝍) denotes the 

joint probability of 𝑧𝑧 being 𝑧𝑧𝑖𝑖 and 𝑠𝑠 being 𝑠𝑠𝑖𝑖. Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍) is the marginal probability 

of 𝑠𝑠 being 𝑠𝑠𝑖𝑖. 

Compared to the likelihood function 𝐿𝐿𝑠𝑠(𝜽𝜽) in traditional supervised learning 

settings, our objective likelihood function 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍) additionally includes the 

information from the incomplete records 𝑿𝑿𝐼𝐼𝐼𝐼 as well as the missingness indicators 𝒔𝒔𝐶𝐶 

and 𝒔𝒔𝐼𝐼𝐼𝐼. In this way, 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍) incorporates all available information, whereas 

𝐿𝐿𝑠𝑠(𝜽𝜽) only considers the information of 𝑧𝑧 and 𝒙𝒙 for complete records. However, 

maximizing an objective function such as 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍) is challenging with unknown 

parameter 𝝍𝝍. It is worth noting that, since 𝑧𝑧 is unknown for incomplete records, we 

cannot directly estimate 𝝍𝝍 of the missingness mechanism 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍). To overcome 

this challenge, we temporally fill up the missing values of 𝑧𝑧 so that we can proceed 

with the estimation of the missingness mechanism 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) (e.g., by estimating a 

logit model regressing 𝑠𝑠 on 𝑧𝑧 and 𝒙𝒙). However, directly filling the missing values of 𝑧𝑧 
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according to Equation (2.8), although intuitively correct, does not have theoretical 

support for increasing 𝐿𝐿𝑠𝑠−𝑠𝑠. Therefore, we propose using the following sampling 

approach to fill missing values of 𝑧𝑧 to estimate 𝝍𝝍.  

More specifically, for each incomplete record, let the missing values of 𝑧𝑧 to 

be filled with all the possible values of 𝑧𝑧. We take the example of 𝑧𝑧 being a binary 

variable (i.e., 𝑧𝑧𝑖𝑖𝜖𝜖{0,1}). Each incomplete record 𝑖𝑖 (𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑛𝑛), denoted 

with (𝒙𝒙𝑖𝑖 , ?), is expanded into two records: (𝒙𝒙𝑖𝑖 , 0) and (𝒙𝒙𝑖𝑖 , 1). The (𝒙𝒙𝑖𝑖 , 0) record is 

assigned with a weight 𝑞𝑞(𝑧𝑧 = 0|𝒙𝒙𝑖𝑖;𝜽𝜽∗), while the (𝒙𝒙𝑖𝑖 , 1) record is assigned with a 

weight 𝑞𝑞(𝑧𝑧 = 1|𝒙𝒙𝑖𝑖;𝜽𝜽∗). For the complete records, each of them is kept as is and is 

assigned a weight of 1. In this sense, there will be 𝑚𝑚 + 𝑛𝑛 × 2 records accompanied by 

their weights. Then one can proceed to the estimation of parameter 𝝍𝝍.9  

Like Step 1, in practical implementation, we can use machine learning to 

model 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍). Here, we denote the estimate for parameter 𝝍𝝍 as 𝝍𝝍∗. 

Step 3: Final Imputation 

Given estimated parameters (𝜽𝜽∗,𝝍𝝍∗), the imputed value 𝑧𝑧𝑖𝑖 of the incomplete record 

under the semi-supervised learning setting can be solved as follows: 

𝑧𝑧𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧 Pr(𝑧𝑧, 𝑠𝑠𝑖𝑖 = 0|𝒙𝒙𝑖𝑖;𝜽𝜽∗,𝝍𝝍∗)   

 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧 𝑝𝑝(𝑠𝑠𝑖𝑖 = 0|𝑧𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍∗)𝑞𝑞(𝑧𝑧|𝒙𝒙𝑖𝑖;𝜽𝜽∗), i=m+1, …, m+n, (2.10) 

where Pr(𝑧𝑧, 𝑠𝑠𝑖𝑖 = 0|𝒙𝒙𝑖𝑖;𝜽𝜽∗,𝝍𝝍∗) denotes the joint probability of 𝑧𝑧𝑖𝑖 = 𝑧𝑧 and 𝑠𝑠𝑖𝑖 = 0. The 

equation of the second line is derived by Bayes’ rule. In this final imputation step, 

Equation (2.10) incorporates the missingness mechanism into the traditional 

imputation process while the traditional imputation approach from Equation (2.8) 

ignores the missingness mechanism. 

 
9 The sampling approach can be analogously extended to the situation when 𝑧𝑧 has multiple 
possible values. As the number of possible values of z increases, however, we would expect 
more random samples to be drawn to accurately approximate the conditional distribution of z.  
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Pseudocode of the imputation steps above is detailed in Table 2-1. 

Algorithm 2.1: Semi-supervised imputation for categorical variable 
 Data:  

𝑍𝑍, a column vector of length 𝑚𝑚 + 𝑛𝑛, denoting the incomplete variable 
// 𝑧𝑧𝑖𝑖 denotes the value of variable 𝑧𝑧 for the 𝑖𝑖th record, 𝑖𝑖 = 1, 2, … ,𝑚𝑚 + 𝑛𝑛.  
// Records are sorted such that the first 𝑚𝑚 values of 𝑍𝑍 are observed and the 
last 𝑛𝑛 values are missing. 

𝑋𝑋, a (𝑚𝑚 + 𝑛𝑛) × 𝑘𝑘 matrix containing 𝑚𝑚 + 𝑛𝑛 records and 𝑘𝑘 complete variables 
// 𝒙𝒙𝑖𝑖 denotes values of 𝑘𝑘 complete variables for the 𝑖𝑖th record, 𝑖𝑖 =
1, 2, … ,𝑚𝑚 + 𝑛𝑛.  

𝑆𝑆, a column vector of length 𝑚𝑚 + 𝑛𝑛, indicating the missingness of 𝑍𝑍 
// 𝑠𝑠𝑖𝑖 is the missingness indicator for 𝑧𝑧𝑖𝑖, where 𝑠𝑠𝑖𝑖 = 1 if 𝑧𝑧𝑖𝑖 has a value and 
𝑠𝑠𝑖𝑖 = 0 otherwise, 𝑖𝑖 = 1, 2, … ,𝑚𝑚 + 𝑛𝑛. 

 Input: 
𝑏𝑏, the number of all possible values of 𝑧𝑧 specified by the user 
𝜔𝜔, an empty list to store weights for records  
ImputeMdl, user specified model of the relationship between 𝑧𝑧 and 𝒙𝒙 

// For categorical variable 𝑧𝑧, ImputeMdl generates the probability 
distribution of 𝑧𝑧 over �𝑧𝑧(1), 𝑧𝑧(2), … , 𝑧𝑧(𝑏𝑏)� given 𝒙𝒙. 

 Output: 
𝑍̂𝑍, a vector of length 𝑚𝑚 + 𝑛𝑛 of the imputed variable, initialized as 𝑍𝑍 

// The missing values in 𝑍̂𝑍 are replace with 𝑧̂𝑧𝑖𝑖, 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑛𝑛. 
 // Step 1: Traditional imputation 

1 estimate imputation model ImputeMdl, 𝑞𝑞(𝑧𝑧|𝒙𝒙;𝜽𝜽∗), using 𝑚𝑚 complete records; 
 // Step 2: Semi-supervised learning 

2 for each 𝑖𝑖 in {1, 2, … ,𝑚𝑚 } // complete records 
3 assign the complete record (𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖) with weight one, and store the weight 

to the list 𝜔𝜔; 
4 end for 
5 for each 𝑖𝑖 in {𝑚𝑚 + 1,𝑚𝑚 + 2, … ,𝑚𝑚 + 𝑛𝑛} // incomplete records 
6 expand the incomplete record (? ,𝒙𝒙𝑖𝑖) to 𝑏𝑏 records: �𝑧𝑧(1),𝒙𝒙𝑖𝑖�,  �𝑧𝑧(2),𝒙𝒙𝑖𝑖�, 

… �𝑧𝑧(𝑏𝑏),𝒙𝒙𝑖𝑖�; 
7 assign weight 𝑞𝑞�𝑧𝑧(𝑗𝑗)�𝒙𝒙𝑖𝑖;𝜽𝜽∗� to each of the expanded record �𝑧𝑧(𝑗𝑗),𝒙𝒙𝑖𝑖�, 𝑗𝑗 =

1, 2, … , 𝑏𝑏, and store the weight to the list 𝜔𝜔; 
8 end for 
9 regress 𝑠𝑠 on (𝑧𝑧,𝒙𝒙) using expanded data (𝑚𝑚 + 𝑛𝑛 × 𝑏𝑏 records) with the 

corresponding weight 𝜔𝜔, and get estimated model 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍∗); 
 // Step 3: Final Imputation 

10 for each 𝑖𝑖 in {𝑚𝑚 + 1,𝑚𝑚 + 2, … ,𝑚𝑚 + 𝑛𝑛} 
11 replace missing values in 𝑍𝑍 with 𝑧̂𝑧𝑖𝑖 according to Equation (2.10), namely 

𝑧̂𝑧𝑖𝑖 ← argmax𝑧𝑧𝑝𝑝(𝑠𝑠𝑖𝑖 = 0|𝑧𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍∗)𝑞𝑞(𝑧𝑧|𝒙𝒙𝑖𝑖;𝜽𝜽∗); 
12 end for 
13 return 𝑍̂𝑍 

Table 2-1 Algorithm of Semi-Supervised Imputation for Categorical Variable 
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2.3.1.2 Comparing Supervised and Semi-Supervised Imputation Methods 

In Theorem 2.1 presented below, we prove that our approach generates a greater 

likelihood value 𝐿𝐿𝑠𝑠−𝑠𝑠 compared to 𝐿𝐿𝑠𝑠 from the traditional approach. The solution of 

the traditional approach is a special case of our solution (when 𝝍𝝍 = 𝟎𝟎, i.e., 𝐿𝐿𝑠𝑠(𝜽𝜽∗) =

𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝟎𝟎)), and formally, we show that 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝝍𝝍∗) > 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝟎𝟎) in Theorem 2.1. 

Moreover, the parameters estimate (𝜽𝜽∗,𝟎𝟎) in the right-hand side term is conceptually 

employed by the traditional imputation of Equation (2.8), as shown in Theorem 2.2.  

Lemma 2.1.    Let ℤ be the set of all possible values of the categorical variable 𝑧𝑧. |ℤ| 

denotes the number of elements in set ℤ. We define two functions, 𝑔𝑔(𝝍𝝍) and 𝑔𝑔�(𝝍𝝍), 

as follow: 

𝑔𝑔(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 , and  

𝑔𝑔�(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ∑ 𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑧𝑧�∈ℤ

𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1 .  

The inequality 𝑔𝑔(𝝍𝝍∗) ≥ 𝑔𝑔(𝟎𝟎) holds if 𝝍𝝍∗ is optimum for maximizing function 𝑔𝑔�(𝝍𝝍).  

In the expression of 𝑔𝑔(𝝍𝝍), Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍) indicates the marginal probability of 𝑠𝑠 = 𝑠𝑠𝑖𝑖 

conditional on 𝒙𝒙𝑖𝑖, which is obtained by summing the joint probability of 𝑧𝑧𝑖𝑖 and 𝑠𝑠𝑖𝑖 

conditional on 𝒙𝒙𝑖𝑖 with respect to 𝑧𝑧𝑖𝑖, namely ∑ Pr(𝑠𝑠𝑖𝑖 , 𝑧̃𝑧|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑧𝑧�∈ℤ . 

Proof sketch: 

First, it can be proved that 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍): 

𝑔𝑔(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   (i) 

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   (ii) 

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ln∑ Pr(𝑠𝑠𝑖𝑖 , 𝑧̃𝑧|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑧𝑧�∈ℤ

𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   (iii) 

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ln∑ 𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑧𝑧�∈ℤ

𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   (iv) 

 ≥ ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ∑ 𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑧𝑧�∈ℤ

𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   (v) 

 = 𝑔𝑔�(𝝍𝝍). (vi) 
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Equality (i) holds since the relationship between parameter 𝝍𝝍 and 𝜽𝜽 are not 

constrained (e.g., by imposing a prior assumption). Inequality (v) is supported by 

Jensen’s inequality. When 𝝍𝝍 = 𝟎𝟎, there is 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍 = 𝟎𝟎) being constant with 

respect to 𝑧𝑧𝑖𝑖. Under this condition, 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍) holds with equality. Therefore, 

there is 𝑔𝑔(𝟎𝟎) = 𝑔𝑔�(𝟎𝟎). Since 𝝍𝝍∗ is optimum for maximizing 𝑔𝑔�(𝝍𝝍), there is 𝑔𝑔�(𝝍𝝍∗) ≥

𝑔𝑔�(𝟎𝟎). Since 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍) holds for general cases, there is 𝑔𝑔(𝝍𝝍∗) ≥ 𝑔𝑔�(𝝍𝝍∗) ≥

𝑔𝑔�(𝟎𝟎) = 𝑔𝑔(𝟎𝟎). 

Q.E.D. 

Theorem 2.1. The inequality 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝝍𝝍∗) ≥ 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝟎𝟎) holds if 𝜽𝜽∗ is optimum for 

maximizing 𝐿𝐿𝑠𝑠 and 𝝍𝝍∗ is optimum for maximizing function 𝑔𝑔�(𝝍𝝍). 

In Theorem 2.1, 𝑔𝑔�(𝝍𝝍) is the objective function for maximization in Step 2. 

The first summation of 𝑔𝑔�(𝝍𝝍) indicates the sum of the log-likelihoods of observing the 

missingness indicator of the complete records. The second summation describes that 

each incomplete record is expanded by filling the missing 𝑧𝑧𝑖𝑖 with all possible 

realizations in ℤ and assigning each expanded record with the weight 𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗).  

Proof sketch: 

First, decompose the joint probability Pr(𝑧𝑧𝑖𝑖 , 𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽,𝝍𝝍) as follows: 

Pr(𝑧𝑧𝑖𝑖 , 𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽,𝝍𝝍) = 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑞𝑞(𝑧𝑧𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽). 

Substitute the above equation into 𝐿𝐿𝑠𝑠−𝑠𝑠, there is: 

𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍) = ∏ [𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑞𝑞(𝑧𝑧𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽)]𝑚𝑚
𝑖𝑖=1 ∙ ∏ Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 = {∏ 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍) ∙𝑚𝑚
𝑖𝑖=1 ∏ Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 } ∙ {∏ 𝑞𝑞(𝑧𝑧𝑖𝑖|𝒙𝒙𝑖𝑖;𝜽𝜽)𝑚𝑚
𝑖𝑖=1 }  

 = {∏ 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 ∙ ∏ Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 } ∙ 𝐿𝐿𝑠𝑠. 

Taking ln(∙) on both sides of the above equation, there is: 

ln�𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽,𝝍𝝍)� = ln{∏ 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 ∙ ∏ Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 } + ln�𝐿𝐿𝑠𝑠(𝜽𝜽)�  

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1  +ln�𝐿𝐿𝑠𝑠(𝜽𝜽)�  
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 = 𝑔𝑔(𝝍𝝍) + ln�𝐿𝐿𝑠𝑠(𝜽𝜽)�.  

According to Lemma 2.1, there is 𝑔𝑔(𝝍𝝍∗) ≥ 𝑔𝑔(𝟎𝟎). Hence, 

ln�𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝝍𝝍∗)�  = 𝑔𝑔(𝝍𝝍∗) + ln�𝐿𝐿𝑠𝑠(𝜽𝜽∗)� ≥ 𝑔𝑔(𝟎𝟎) + ln�𝐿𝐿𝑠𝑠(𝜽𝜽∗)�  

 = ln�𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝟎𝟎)�. 

Given the monotone property of the ln(∙) function, there is 𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝝍𝝍∗) ≥

𝐿𝐿𝑠𝑠−𝑠𝑠(𝜽𝜽∗,𝟎𝟎). 

Q.E.D. 

Lemma 2.1 can be generalized to the case of 𝑧𝑧 being a continuous variable, 

with 𝑔𝑔�(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ∫ℤ𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑑𝑑𝑧̃𝑧𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 , 

where ℤ is the value space of the continuous variable 𝑧𝑧. Detailed proof is shown in 

Appendix 1.2. Since Theorem 2.1 is valid under general forms of 𝑔𝑔�(𝝍𝝍), it is also 

generalizable to the case of z being continuous.  

Theorem 2.2 The final imputation of Equation (2.10), using the parameter estimates 

(𝜽𝜽∗,𝟎𝟎), generates the same results as the traditional imputation of Equation (2.8).  

Proof sketch: 

First, it is worth noting that, when 𝝍𝝍 = 𝟎𝟎, the missingness mechanism 

𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) is invariant with respect to 𝑧𝑧. This statement obviously holds for general 

functional forms of 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍), thus we provide a conceptual discussion here. For 

example, let 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) be a logistic model and we split the parameter vector 𝝍𝝍 into 

two parts, 𝝍𝝍𝑧𝑧 for the coefficient of 𝑧𝑧, and 𝝍𝝍𝒙𝒙 for the coefficients of 𝒙𝒙. Then there is 

𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧,𝒙𝒙;𝝍𝝍) = 1
�1+𝑒𝑒−(𝑧𝑧×𝝍𝝍𝑧𝑧+𝒙𝒙×𝝍𝝍𝒙𝒙)�

. In this sense, 𝝍𝝍 = 𝟎𝟎 keeps the 𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧,𝒙𝒙;𝝍𝝍) 

constant. Similarly, we can infer that under 𝝍𝝍 = 𝟎𝟎, 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) becomes constant 

when 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) is modeled by a neural network or SVM, thus 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) is 

invariant to 𝑧𝑧. Then we can infer that the solution of 𝑧𝑧𝑖𝑖 in Equation (2.10) under 
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(𝜽𝜽 = 𝜽𝜽∗;𝝍𝝍 = 𝟎𝟎) only depends on the term 𝑞𝑞(𝑧𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗), which is just the solution of 

𝑧𝑧𝑖𝑖 under the traditional imputation of Equation (2.8).  

Q.E.D. 

By combining Theorems 2.1 and 2.2, we demonstrate that our semi-

supervised parameter estimates are theoretically superior to the ones generated by the 

traditional imputation approach. It is also worth noting that, when obtaining an 

estimate of 𝝍𝝍∗ = 𝟎𝟎, our imputation method degrades to the traditional imputation 

method. Therefore, the traditional approach’s solution can be viewed as a special case 

of our solution. 

In a practical implementation, various machine learning algorithms can be 

used to model 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍) and 𝑞𝑞(𝑧𝑧|𝒙𝒙;𝜽𝜽), such as SVMs and neural networks. 

However, it is worth noting that Steps 1-3 are illustrated in the case of 𝑧𝑧 being a 

categorical random variable. When 𝑧𝑧 is a continuous random variable, the 

implementation of Step 1 to obtain 𝑞𝑞(𝑧𝑧|𝒙𝒙,𝜽𝜽∗) requires additional computational 

processes unless a conditional distribution of 𝑧𝑧 given 𝒙𝒙 is pre-assumed (e.g., normal 

distribution). In the next subsection, we propose a solution for the situation where 𝑧𝑧 is 

a continuous variable without imposing distributional assumption of 𝑧𝑧.  

2.3.1.3 Nonparametric Estimation of the Conditional Distribution 

As discussed in Section 2.3.1.1, two critical elements of our imputation process are 

the missingness mechanism, 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍), and the conditional distribution of the 

incomplete variable, 𝑞𝑞(𝑧𝑧|𝒙𝒙;𝜽𝜽). When 𝑧𝑧 is a continuous variable, let the imputed 

value obtained by a machine learning algorithm (which can also be a simple 

regression algorithm for predicting continuous variables) in Step 1 be denoted by 

𝒽𝒽(𝒙𝒙;𝜽𝜽∗). As a result, the residual term 𝜀𝜀𝑖𝑖 is given by: 

𝜀𝜀𝑖𝑖 = 𝑧𝑧𝑖𝑖 −  𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗), 𝑖𝑖 = 1,2, … ,𝑚𝑚. 
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We assume that the residual 𝜀𝜀 is i.i.d., then we discretize the continuous 

residual 𝜀𝜀 by constructing a histogram for 𝜀𝜀.10 The discretized 𝜀𝜀 is denoted with 𝜀𝜀𝑑𝑑. 

The range of 𝜀𝜀 is taken as the interval from 𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑖𝑖) to 𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑖𝑖), where 𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑖𝑖) and 

𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑖𝑖) are respectively the minimum and maximum values among the residuals 𝜀𝜀𝑖𝑖, 

𝑖𝑖 = 1,2, … ,𝑚𝑚. We divide the range of 𝜀𝜀 to 𝑏𝑏 bins with equal length and let each bin 

be represented by its midpoint. The value space of 𝜀𝜀𝑑𝑑 is denoted with the set 

�𝜀𝜀(1)
𝑑𝑑 , 𝜀𝜀(2)

𝑑𝑑 , … , 𝜀𝜀(𝑏𝑏)
𝑑𝑑 �. The probability of each bin, Pr�𝜀𝜀(𝑗𝑗)

𝑑𝑑 �, 𝑗𝑗 = 1,2, … , 𝑏𝑏, is its 

corresponding frequency.  

During Step 2, the value space of the random sampling for missing 𝑧𝑧, given 

𝒙𝒙, is �𝜀𝜀(0)
𝑑𝑑 + 𝒽𝒽(𝒙𝒙;𝜽𝜽∗), 𝜀𝜀(1)

𝑑𝑑 + 𝒽𝒽(𝒙𝒙;𝜽𝜽∗), … , 𝜀𝜀(𝑏𝑏)
𝑑𝑑 + 𝒽𝒽(𝒙𝒙;𝜽𝜽∗)�. The probability of each 

value 𝜀𝜀(𝑗𝑗)
𝑑𝑑 + 𝒽𝒽(𝒙𝒙;𝜽𝜽∗) is the corresponding probability of 𝜀𝜀(𝑗𝑗)

𝑑𝑑 , 𝑗𝑗 = 1,2, … , 𝑏𝑏. Like 

Step 2 for the case of categorical incomplete variable, we can obtain estimates for 

parameter 𝝍𝝍 using complete records and randomly drawn observations for incomplete 

records. 

Finally, in Step 3, missing values of 𝑧𝑧 are imputed by adding the discretized 

residual to fitted value 𝑧̂𝑧 = 𝒽𝒽(𝒙𝒙;𝜽𝜽∗), wherein the discretized residual is solved by 

maximizing Pr�𝑧̂𝑧 + 𝜀𝜀𝑑𝑑 , 𝑠𝑠 = 0�𝒙𝒙;𝜽𝜽∗,𝝍𝝍∗� = Pr�𝑠𝑠 = 0�𝑧̂𝑧 + 𝜀𝜀𝑑𝑑 ,𝒙𝒙;𝜽𝜽∗,𝝍𝝍∗�Pr�𝜀𝜀𝑑𝑑�, 

which is the joint probability of the imputed value and the missingness indicator. 

The nonparametric approach provides a distribution-free solution to 

implement our method proposed in Section 2.3.1.1 to handle continuous incomplete 

variables. It is worth noting that our solution can work with machine learning 

algorithms to model the potentially complex realizations of 𝑞𝑞(𝑧𝑧|𝒙𝒙,𝜽𝜽). Pseudocode of 

semi-supervised imputation for continuous variable is detailed in Table 2-2. 

 
10 A more advanced density estimation for 𝜀𝜀 can also be used to achieve improved 
approximation accuracy. For instance, the density of 𝜀𝜀 can be approximated with the 
nonparametric kernel density estimates 1

𝑚𝑚ℎ
∑ 𝐾𝐾 �𝜀𝜀−𝜀𝜀𝑖𝑖

ℎ
�𝑚𝑚

𝑖𝑖=1 , where 𝐾𝐾(∙) is a normal kernel and ℎ 
is the bandwidth (Cameron et al. 2005, p. 299). 
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Algorithm 2.2: Semi-supervised imputation for continuous variable 
 Data:  

𝑍𝑍, a column vector of length 𝑚𝑚 + 𝑛𝑛, denoting the incomplete variable 
// 𝑧𝑧𝑖𝑖 denotes the value of variable 𝑧𝑧 for the 𝑖𝑖th record, 𝑖𝑖 = 1, 2, … ,𝑚𝑚 + 𝑛𝑛.  
// Records are sorted such that the first 𝑚𝑚 values of 𝑍𝑍 are observed and the 
last 𝑛𝑛 values are missing. 

𝑋𝑋, a (𝑚𝑚 + 𝑛𝑛) × 𝑘𝑘 matrix containing 𝑚𝑚 + 𝑛𝑛 records and 𝑘𝑘 complete variables 
// 𝒙𝒙𝑖𝑖 denotes values of 𝑘𝑘 complete variables for the 𝑖𝑖th record, 𝑖𝑖 =
1, 2, … ,𝑚𝑚 + 𝑛𝑛.  

𝑆𝑆, a column vector of length 𝑚𝑚 + 𝑛𝑛, indicating the missingness of 𝑍𝑍 
// 𝑠𝑠𝑖𝑖 is the missingness indicator for 𝑧𝑧𝑖𝑖, where 𝑠𝑠𝑖𝑖 = 1 if 𝑧𝑧𝑖𝑖 has a value and 
𝑠𝑠𝑖𝑖 = 0 otherwise, 𝑖𝑖 = 1, 2, … ,𝑚𝑚 + 𝑛𝑛. 

 Input: 
𝑏𝑏, the number of all possible values of 𝑧𝑧 

// 𝑏𝑏 is specified by user for discretizing the continuous variable 𝑧𝑧 to b bins. 
𝜔𝜔, an empty list to store weights for records  
ImputeMdl, user specified model of the relationship between 𝑧𝑧 and 𝒙𝒙 

// For continuous variable 𝑧𝑧, ImputeMdl generates fitted value of 𝑧𝑧 given 𝒙𝒙. 
 Output: 

𝑍𝑍�, a vector of length 𝑚𝑚 + 𝑛𝑛 of the imputed variable, initialized as 𝑍𝑍 
// The missing values in 𝑍𝑍� are replace with 𝑧̃𝑧𝑖𝑖, 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝑛𝑛. 

 // Step 1: Traditional imputation 
1 estimate ImputeMdl to generate functional relationship between 𝑧𝑧 and 𝒙𝒙, 

denoted with 𝒽𝒽(𝒙𝒙;𝜽𝜽∗), using 𝑚𝑚 complete observations;  
 // Step 2: Semi-supervised learning 

2 for each 𝑖𝑖 in {1, 2, … ,𝑚𝑚 } // complete records 
3 assign the complete record (𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖) with weight one, and store the weight 

to the list 𝜔𝜔; 
4 𝜀𝜀𝑖̂𝑖 ← 𝑧𝑧𝑖𝑖 −  𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗); // calculate the residual term 
5 end for 
6 using residual terms of 𝑚𝑚 records to discretize 𝜀𝜀 to the value space 

�𝜀𝜀(1)
𝑑𝑑 , 𝜀𝜀(2)

𝑑𝑑 , … , 𝜀𝜀(𝑏𝑏)
𝑑𝑑 � and obtain the corresponding probability 𝑞𝑞�𝜀𝜀(𝑗𝑗)

𝑑𝑑 �, 𝑗𝑗 =
1, 2, … , 𝑏𝑏, through nonparametric estimation;   

7 for each 𝑖𝑖 in {𝑚𝑚 + 1,𝑚𝑚 + 2, … ,𝑚𝑚 + 𝑛𝑛} // incomplete records 
8 expand the incomplete record (? ,𝒙𝒙𝑖𝑖) to 𝑏𝑏 records: �𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗) + 𝜀𝜀(1)

𝑑𝑑 ,𝒙𝒙𝑖𝑖�,  
�𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗) + 𝜀𝜀(2)

𝑑𝑑 ,𝒙𝒙𝑖𝑖�, … �𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗) + 𝜀𝜀(𝑏𝑏)
𝑑𝑑 ,𝒙𝒙𝑖𝑖�; 

9 assign weight 𝑞𝑞�𝜀𝜀(𝑗𝑗)
𝑑𝑑 � to each of the expanded record �𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗) +

𝜀𝜀(𝑗𝑗)
𝑑𝑑 ,𝒙𝒙𝑖𝑖�, 𝑗𝑗 = 1, 2, … , 𝑏𝑏, and store the weight to the list 𝜔𝜔; 

10 end for 
11 regress 𝑠𝑠 on (𝑧𝑧,𝒙𝒙) using expanded data (𝑚𝑚 + 𝑛𝑛 × 𝑏𝑏 records) with the 

corresponding weight 𝜔𝜔, and get estimated model 𝑝𝑝(𝑠𝑠|𝑧𝑧,𝒙𝒙;𝝍𝝍∗); 
 // Step 3: Final Imputation 

12 for each 𝑖𝑖 in {𝑚𝑚 + 1,𝑚𝑚 + 2, … ,𝑚𝑚 + 𝑛𝑛} 
13 replace missing values in 𝑍𝑍� with 𝑧̃𝑧𝑖𝑖, wherein 𝑧̃𝑧𝑖𝑖 ← 𝑧̂𝑧𝑖𝑖 +

argmax𝜀𝜀(𝑗𝑗)
𝑑𝑑 𝑝𝑝�𝑠𝑠𝑖𝑖 = 0�𝑧̂𝑧𝑖𝑖 + 𝜀𝜀(𝑗𝑗)

𝑑𝑑 ,𝒙𝒙𝑖𝑖;𝝍𝝍∗�𝑞𝑞�𝜀𝜀(𝑗𝑗)
𝑑𝑑 � and 𝑧̂𝑧𝑖𝑖 = 𝒽𝒽(𝒙𝒙𝑖𝑖;𝜽𝜽∗); 

14 end for 
15 return 𝑍𝑍� 

Table 2-2 Algorithm of Semi-Supervised Imputation for Continuous Variable 
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2.3.2 Monte Carlo Likelihood Estimation to Correct Bias Caused by Missing 

Values 

Although maximum likelihood (ML) and multiple imputation (MI) are theoretically 

sound for large samples, they still rest on a critical assumption that the missingness 

mechanism is MAR. In most cases we should expect departure from MAR (Schafer 

and Graham 2002), as in the self-selection case of missing healthcare records and 

product review ratings. In the following discussion, we present the Monte Carlo 

maximum likelihood estimation approach to handling missing values under NMAR.  

Likelihood estimation for MNAR models is difficult from a computational 

standpoint. For incomplete observations, integration over the unobserved 𝑧𝑧 value is 

required to compute the likelihood. Researchers have long been concerned that, under 

the NMAR mechanism, parameter estimation is often difficult or impossible 

(Rotnitzky et al. 1998; Wang et al. 2014). However, recent theoretical analyses show 

that it is possible to identify the parameters of interest, at least for certain types of 

model specifications (Miao et al. 2016). Specifically, parameters are identifiable 

when we can assume a normal model for the incomplete variable and a monotone 

missingness mechanism (e.g., the common logit or probit model). In the proposed 

method, we follow the above assumptions for the incomplete variable and the 

missingness mechanism. 

To distinguish between our proposed method and the traditional maximum 

likelihood assuming MAR, we denote the latter with ML-MAR. As with the ML-

MAR and MI methods, our estimation process does not distinguish between the 

dependent and independent variables during the parameter estimation process. Our 

estimation involves the parameters for the conditional distribution of the incomplete 

variable given complete variables. The regression coefficients are computed after this 

parameter estimation process.  
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Consider a data set with three variables of interest 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧, where variable 

𝑧𝑧 is missing for certain observations. Without loss of generality, the regression model 

of interest has 𝑦𝑦 being the dependent variable while 𝑥𝑥 is the dependent variable and 𝑧𝑧 

is the control variable. We estimate parameters of the conditional distribution of 𝑧𝑧 

before proceeding with estimating coefficients for the regression model.  

Particularly, we model the conditional distribution of the incomplete variable 

and the missingness mechanism in parametric form. The conditional distribution of 𝑧𝑧 

given variables (𝑥𝑥,𝑦𝑦) is normal and the probability density function is given by: 

 𝑓𝑓(𝑧𝑧|𝑥𝑥,𝑦𝑦) = 𝑁𝑁(𝛼𝛼0 + 𝛼𝛼1𝑥𝑥 + 𝛼𝛼2𝑦𝑦, 𝛿𝛿𝑧𝑧2), (2.11) 

where parameters (𝛼𝛼0,𝛼𝛼1,𝛼𝛼2, 𝛿𝛿𝑧𝑧2), denoted with 𝜽𝜽, are unknown and to be solved.  

The missingness mechanism is modeled as the conditional distribution of 𝑠𝑠 

given variables (𝑥𝑥,𝑦𝑦, 𝑧𝑧) (e.g., specified as a logit model). The unknown parameters in 

the missingness mechanism, denoted with 𝝍𝝍, then consist of the intercept and slopes. 

Under the NMAR mechanism, valid estimation requires that the missingness 

mechanism be modeled as part of the parameter estimation process (Rubin 1976). 

Then parameters are estimated by maximizing the joint likelihood of the two models 

through MCMC approaches. In this example above, the joint likelihood is: 

 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠|𝑥𝑥,𝑦𝑦;𝜽𝜽,𝝍𝝍)   

 = ∑ ln[Pr(𝑠𝑠𝑖𝑖 , 𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 + ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1    

 = ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +   

    ∑ ln[∫ Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)𝑑𝑑𝑑𝑑]𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   

(2.12) 

In Equation (2.12), the first term denotes the summation of log-likelihood 

over the complete observations (𝑖𝑖 =  1, … ,𝑚𝑚), and the second term denotes the 

summation of log-likelihood over the incomplete observations (𝑖𝑖 =  𝑚𝑚 + 1, … ,𝑚𝑚 +
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𝑛𝑛). The second term involves the integration over the joint probability 

Pr(𝑠𝑠𝑖𝑖 = 0, 𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍) with respect to 𝑧𝑧 since the underlying 𝑧𝑧𝑖𝑖 is unknown. In our 

method, variables 𝑥𝑥 and 𝑦𝑦 are always conditioned on since they are complete 

variables without missing values.  

The likelihood function of (2.12) can be maximized using the expectation 

maximization (EM) algorithm (Dempster et al. 1977).  During each iteration, the 

expectation (E) step involves the calculation of the expected log-likelihood over the 

posterior distribution of 𝑧𝑧 given observed values of 𝑥𝑥, 𝑦𝑦 and 𝑠𝑠 as well as the 

estimation of (𝜽𝜽,𝝍𝝍) at the current iteration. The maximization (M) step maximizes 

the expectation outcome in the E step and obtains updated parameter estimation for 

(𝜽𝜽,𝝍𝝍).  Due to the difficulty in obtaining a closed form formula for the expectation 

step, we employ the Monte Carlo EM algorithm (Wei and Tanner 1990; Neath 2013) 

to numerically approximate the expectation outcome by sampling from the posterior 

distribution of 𝑧𝑧 using the Metropolis–Hastings algorithm, an MCMC method.11  We 

checked the convergence of the EM algorithm and the iterations are terminated when 

the absolute difference between the t-th and the t+1-th iteration for parameter 𝜽𝜽 is less 

than a threshold (e.g., 10-3). Table 2-3 presents the pseudocode for obtaining 

maximum likelihood estimators for the parameters in the conditional distribution of 𝑧𝑧 

and in the missingness mechanism.  

After obtaining the estimation of (𝜽𝜽,𝝍𝝍), we derive the mean, variance, and 

correlation with other variables of 𝑧𝑧. These estimates can be substituted to the 

estimation of the regression coefficients of the linear regression model. 

In presenting the Monte Carlo maximum likelihood estimation approach, the 

missing values occur in the independent variable. The Monte Carlo maximum 

likelihood estimation can also be used to handle missing values in the dependent 

 
11 The technical details of implementing the Monte Carlo likelihood estimation is provided in 
Appendix 1.3. 
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variable. In this situation, obtaining the estimates for 𝜽𝜽 already reaches the goal of 

estimating the regression coefficients.  

Algorithm 2.3: Monte Carlo maximum likelihood estimation to correct bias caused 
by missing values 

 Data:  
𝑍𝑍, a column vector of length 𝑚𝑚 + 𝑛𝑛, denoting the incomplete variable 

// Records are sorted such that the first 𝑚𝑚 values of 𝑍𝑍 are observed and the 
last 𝑛𝑛 values are missing. 

𝑋𝑋, a (𝑚𝑚 + 𝑛𝑛) × 𝑘𝑘 matrix containing 𝑚𝑚 + 𝑛𝑛 records and 𝑘𝑘 complete variables 
// The algorithm does not distinguish dependent and independent 
variables. Regression coefficients are calculated after obtaining output of 
the algorithm, as noted in Section 2.3.2. For the estimation of regression 
coefficients in Section 2.5.1, since the dependent variable and an 
independent variable are both complete, they compose 𝑋𝑋. 

𝑆𝑆, a column vector of length 𝑚𝑚 + 𝑛𝑛, indicating the missingness of 𝑍𝑍 
 Input: 

StoppingCriterion, convergence condition of EM iterations specified by user, 
initialized as FALSE   
𝑐𝑐, the number of samples to be drawn for each incomplete record 

 Output: 
𝜽𝜽�, parameter estimates in the conditional distribution model:  

𝑓𝑓(𝑧𝑧|𝒙𝒙,𝑦𝑦) = 𝑁𝑁(𝛼𝛼0 + 𝛼𝛼1𝒙𝒙 + 𝛼𝛼2𝑦𝑦, 𝛿𝛿𝑧𝑧2) 
𝝍𝝍� , parameter estimates in the model of missingness mechanism:  

Pr(𝑠𝑠|𝒙𝒙,𝑦𝑦, 𝑧𝑧;𝝍𝝍) 
1 𝑡𝑡 ← 0  
2 initialize parameters 𝜽𝜽 and 𝝍𝝍 to be 𝜽𝜽𝑡𝑡 and 𝝍𝝍𝑡𝑡  
3 while StoppingCriterion == false do 

 // Expectation based on MCMC sampling 
4 for each 𝑖𝑖 in {𝑚𝑚 + 1,𝑚𝑚 + 2, … ,𝑚𝑚 + 𝑛𝑛} // incomplete records 
5 draw 𝑐𝑐 samples for the incomplete record (? ,𝒙𝒙𝑖𝑖), where the sampled 

values of 𝑧̃𝑧 are drawn from the posterior distribution of 𝑧𝑧 given 𝒙𝒙, 𝑦𝑦 
and 𝑠𝑠, namely Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕); 

6 end for 
 // Maximization  

7 combine the randomly sampled records (𝑛𝑛 × 𝑐𝑐) with the 𝑚𝑚 complete 
records, letting weights for each randomly sampled record to be 1 𝑐𝑐⁄  while 
for each complete record to be 1; 

8 𝑡𝑡 ← 𝑡𝑡 + 1; 
9 estimate parameter 𝜽𝜽 using the combined records with corresponding 

weights and generate updated estimates 𝜽𝜽� = 𝜽𝜽𝒕𝒕; 
10 estimate parameter 𝝍𝝍 using the combined records with corresponding 

weights and generate updated estimates 𝝍𝝍� = 𝝍𝝍𝒕𝒕; 
11 evaluate StoppingCriterion; 
12 end while 
13 return 𝜽𝜽� and 𝝍𝝍�  

Table 2-3 Algorithm of Monte Carlo Maximum Likelihood Estimation to 
Correct Bias Caused by Missing Values 
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In summary, the two proposed approaches in this section aim at incorporating 

the missingness mechanism and maximizing effective usage of observable 

information including the complete and incomplete records. The semi-supervised 

imputation approach focuses on imputation accuracy for data analytics tasks, the 

Monte Carlo maximum likelihood method focuses on obtaining valid estimation of 

regression coefficients. Motivated by different objectives, the former approach gains 

the flexibility in imputing missing values with different machine learning algorithms, 

and the latter approach maintains high statistical validity to promote rigorous 

empirical analysis with missing values. 

2.4 Evaluation of Semi-Supervised Missing Value Imputation Method 

In this section, we evaluate the imputation accuracy of the proposed semi-supervised 

imputation approach. We first demonstrate the improved imputation accuracy of the 

proposed method in simulation studies, then evaluate the method in real-world data to 

show that the proposed imputation approach promotes better prediction accuracy in 

data analytics tasks. 

2.4.1 Numerical Analysis using Simulations 

This sub-section corroborates our theoretical analysis in Section 2.3.1.2 using 

numerical analysis. Moreover, simulation results suggest that our semi-supervised 

imputation method outperforms traditional imputation methods when used with 

different machine learning algorithms such as neural network and gradient boosting.  

2.4.1.1 Evaluation in Terms of the Likelihood Function 

Data Generation  

Without loss of generality, we consider the case where there is only one complete 

variable 𝑥𝑥. This variable can be considered a composite variable of several complete 

variables. The incomplete variable 𝑧𝑧 is simulated from a linear function of 𝑥𝑥, namely: 
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𝑧𝑧 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝜀𝜀, 

where 𝑥𝑥~𝑁𝑁(3, 1.5) and 𝜀𝜀~𝑁𝑁(0, 1)  are randomly drawn from the normal 

distributions with sample size being 2,000. Coefficients 𝛽𝛽0 and 𝛽𝛽1 are set as 1, -1, 

respectively.  

The missingness indicator 𝑠𝑠 is simulated by a logistic model as follows: 

𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧, 𝑥𝑥;𝝍𝝍) =
1

(1 + 𝑒𝑒−(𝜓𝜓0+𝜓𝜓1𝑧𝑧+𝜓𝜓2𝑥𝑥)). 

Parameter 𝜓𝜓2 is set as 0.5. We vary the missingness mechanism by allowing the 

coefficient 𝜓𝜓1 to take its value from {0, 1, 2, …, 10}. As 𝜓𝜓1 increases, the 

missingness indicator is correlated to the incomplete variable to a larger extent. The 

intercept term 𝜓𝜓0 is tuned so that the missing value percentage reaches the desired 

level. In this simulation setting, the missing value percentage is set as 20%, 30%, 

40%, 50%, 60%, 70%, or 80%.12  

Parameter Estimation Methods 

After the generation of variables and the missingness, we proceed with the parameter 

estimation. More specifically, for the proposed method, the functional form of the 

conditional distribution, 𝑞𝑞(𝑧𝑧|𝒙𝒙,𝜽𝜽), and the missingness mechanism, 𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧, 𝑥𝑥;𝝍𝝍), 

are correctly specified as the underlying data generation models. In this simulation 

analysis, 𝜽𝜽 contains the coefficients (𝛽𝛽0,𝛽𝛽1), and 𝝍𝝍 contains the coefficients 

(𝜓𝜓0,𝜓𝜓1,𝜓𝜓2). The parameters 𝜽𝜽 are estimated with ordinary regression; and the 

parameters 𝝍𝝍 are estimated with logistic regression. We obtain the estimates of 

(𝛽𝛽0,𝛽𝛽1) and (𝜓𝜓0,𝜓𝜓1,𝜓𝜓2) in Step 1 and Step 2, respectively. In Step 2, since the 

 
12 For the logit model, the missing percentage is monotonic to 𝜓𝜓0, so a binary search for 𝜓𝜓0 
using the trial method within a large enough range will generate the desired value of 𝜓𝜓0. King 
and Zeng (2001) formally discussed the implication of the intercept for logistic regression. 
When all variables are normally distributed, then an appropriate value of 𝜓𝜓0 can be calculated 
by letting the expectation of 𝑠𝑠, to be the desired response percentage. For instance, if the 
missing percentage is 20%, then the intercept term 𝜓𝜓0 is determined by solving 𝐸𝐸(𝑠𝑠|𝑥𝑥, 𝑧𝑧) =
1 − 20%. 
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incomplete variable 𝑧𝑧 is continuous, the residual term 𝜀𝜀𝑖𝑖 = 𝑧𝑧𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1𝑥𝑥) is 

discretized to one hundred bins (by dividing the range of the residual to one hundred 

equal length intervals); therefore, each incomplete record is expanded to one hundred 

rows and the weight of each bin is the percentage of its occurrence frequency, as 

depicted in Section 2.3.1.3.  

The benchmark case assumes MAR: the estimate for 𝜓𝜓1 is set as 0, and the 

estimates for (𝜓𝜓0,𝜓𝜓2) are set as the coefficients obtained from regressing 𝑠𝑠 on 𝑥𝑥 with 

a logistic model.  

Results of Negative Log-likelihood 

Figure 2-1 illustrates the decrease percentage of the negative log-likelihood generated 

by our semi-supervised imputation method compared to the benchmark, which is 

calculated as the reduction in negative log-likelihood scaled by the value of the 

benchmark. Each line is plotted with the 95% confidence interval over 200 simulation 

replications.  

 

 
Figure 2-1 Decrease Percentage of Negative Log-likelihood 

Results show that the proposed semi-supervised imputation method increases 

the likelihood function 𝐿𝐿𝑠𝑠−𝑠𝑠 under different missingness mechanisms and percentages 



45 

 

of missing values, which is consistent with Theorem 2.1. Moreover, as the missing 

value percentage increases, the likelihood function 𝐿𝐿𝑠𝑠−𝑠𝑠 is enhanced to a lesser extent, 

which is consistent with the theory in missing values literature that the information 

loss is related to the missing value percentage (Rubin 1987, p.132). 

In Figure 2-2, we show the decrease percentage of the negative log-likelihood 

under misspecification of the missingness mechanism. Namely when the underlying 

true mechanism is a probit model instead of a logistic model. Results show that the 

missing specification of the classification model (logistic or probit model) has little 

influence on the likelihood function outcome. 

 
 

Figure 2-2 Decrease Percentage of Negative Log-likelihood with Probit Model 
of Missingness Mechanism 

2.4.1.2 Evaluation in Terms of Imputation Accuracy 

The theorems in Section 2.3.1.2 and simulation results in Section 2.4.1.1 show that 

our approach generates a greater likelihood value compared to the traditional 

imputation, which provide support to our semi-supervised imputation approach. In the 

subsequent simulation analysis, we show that our approach produces better 

imputation accuracy over traditional approach based on machine learning models. To 
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examine the imputation accuracy of our proposed method, we employ a relatively 

complex data generation process to reflect the complexity of real-world data. We 

simulate one incomplete variable and fifteen complete variables.  

Data Generation  

The incomplete variable 𝑧𝑧 is generated by the following third-degree polynomial 

function: 

𝑧𝑧 = 𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥12𝑥𝑥2 + 𝑥𝑥22𝑥𝑥1 + 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 + 𝑥𝑥2 + 𝜖𝜖 , 

wherein the two complete variables, 𝑥𝑥1 and 𝑥𝑥2, are randomly drawn from standard 

normal distribution, and the noise, 𝜖𝜖, is drawn from normal distribution of N(0,10). In 

addition, we simulate three complete variables, 𝑥𝑥3, 𝑥𝑥4, and 𝑥𝑥5. These three variables 

are related to 𝑥𝑥1 and/or 𝑥𝑥2 following the equations below: 

𝑥𝑥3 = 𝑥𝑥1 + 𝜖𝜖,  

𝑥𝑥4 = 𝑥𝑥2 + 𝜖𝜖,  

𝑥𝑥5 = 𝑥𝑥1𝑥𝑥2 + 𝜖𝜖,  

where 𝜖𝜖 indicates that the noise is randomly drawn from a standard normal 

distribution. In addition, we generate ten variables 𝑥𝑥6 ∼ 𝑥𝑥15 randomly drawn from 

standard normal distribution, which are uncorrelated with all other variables. 

The missingness indicator 𝑠𝑠 of variable 𝑧𝑧 is generated by a logistic model: 

𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧, 𝑥𝑥1, 𝑥𝑥2;𝝍𝝍) =
1

1 + 𝑒𝑒−(𝜓𝜓0+𝜓𝜓1𝑧𝑧+𝜓𝜓2𝑥𝑥1+𝜓𝜓3𝑥𝑥2). 

Similar to the previous simulation setting, we vary the missingness mechanism by 

allowing the coefficient 𝜓𝜓1 to take its value from {0, 1, …, 10}. The other two 

coefficients 𝜓𝜓2, 𝜓𝜓3, are set as 1. We also vary 𝜓𝜓0 so that missing value percentage is 

set as 20%, 30%, 40%, 50%, 60%, 70%, or 80%. 

Imputation Methods 

To evaluate the performance of our method with different machine learning 

algorithms, we employ different methods to model the conditional distribution, 
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𝑞𝑞(𝑧𝑧|𝒙𝒙,𝜽𝜽). These methods include (a) linear SVM, (b) SVM with radial basis function 

kernel, (c) two-layer neural network with sigmoid activation function, (d) CART 

decision tree, (e) random forest, and (f) gradient boosting machine (GBM) by 

Friedman (2001).13 These machine learning algorithms can be used in data analytics 

tasks to impute missing values. In particular, we use complete observations to train 

the machine learning model that maps from complete variables to the incomplete 

variable, and then use the obtained machine learning model to impute the missing 

values of 𝑧𝑧. However, although machine learning algorithms such as neural network 

models or the gradient boosting machine are advanced in approximating complex 

relationship between the incomplete variable and other complete variables, the 

traditional way of using them does not incorporate the missingness mechanism and 

consequently implicitly assume MAR. The proposed imputation method aims at 

improving the imputation accuracy by incorporating the missingness mechanism. 

For the proposed method, since the incomplete variable 𝑧𝑧 is continuous, the 

residual term is discretized to fifty bins. For the missingness mechanism, all the 

variables, 𝑥𝑥1 ∼ 𝑥𝑥15, are employed for classifying the missingness through the logistic 

model. In this sense, the missingness mechanism is correctly specified as the logit 

model but all variables are used (although only 𝑥𝑥1, 𝑥𝑥2, 𝑧𝑧 are relevant). Results are 

qualitatively similar when the underlying missingness is generated by a probit model 

while the imputation process assumes a logit model representing the missingness 

mechanism. 

 
13 The software used for the machine learning algorithms is Matlab. For the linear SVM and 
radial SVM algorithms, the function is “fitrsvm” with the corresponding linear and radial 
kernel specification. The epsilon value is 1.23 according to the default rule for deciding 
epsilon and the default C (i.e., box constraint) is 1. For the neural network algorithm, the 
function being used is “fitnet”; the first hidden layer size is 5 and the second hidden layer size 
is 2. The training function is Levenberg-Marquardt by default. For the CART decision tree 
algorithm, the function being used is “fitrtree” and the quadratic error tolerance coefficient is 
0.1 to control the tree splitting. For the random forest and gradient boosting, the function is 
“fitrensemble” with the corresponding ensembling methods being specified as ‘bag’ and 
‘LSBoost’, respectively. The number of learners is set as 50. 
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Finally, to gain more insights on the property of the proposed method, we 

also evaluate the imputation accuracy of the proposed method when it is applied to a 

simple linear imputation model (i.e., estimating a linear model that maps from 

complete variables to the incomplete variable 𝑧𝑧 using the complete observations). 

With respect to linear imputation, a state-of-the-art multiple imputation method for 

NMAR, implemented in the “miceMNAR” R package (Galimard et al. 2018), is also 

evaluated. This approach requires a Heckman’s model for data generation. In 

particular, the error term in the imputation model is assumed to follow normal 

distribution, so that the NMAR mechanism is compatible with the Heckman’s model. 

The multiple imputations are created from three steps (Galimard et al. 2018). First, 

maximum likelihood estimator gives estimates for parameters of the Heckman’s 

model and their variance-covariance matrix. Second, parameters of the Heckman’s 

model are drawn from their posterior distribution. Third, imputed values are drawn 

from their predictive distribution. 

To obtain imputed values from “miceMNAR”, we average the results of 

multiple imputations (with the number of imputations being fifty). Moreover, to 

maximize the compatibility of the Heckman’s model, during the data generation, we 

set the underlying missingness mechanism to be a probit model, namely 

𝑝𝑝(𝑠𝑠 = 1|𝑧𝑧, 𝑥𝑥1, 𝑥𝑥2;𝝍𝝍) = Φ−1(𝜓𝜓0 + 𝜓𝜓1𝑧𝑧 + 𝜓𝜓2𝑥𝑥1 + 𝜓𝜓3𝑥𝑥2) and Φ is the standard 

normal cumulative distribution function, other (relevant) factors being equal. For the 

proposed method, we implement it by using the probit model as the missingness 

mechanism. 

Results of Imputation accuracy 

The evaluation metrics for measuring imputation accuracy is the mean 

absolute error (MAE) of the imputed values normalized by the standard deviation of 

𝑧𝑧. Results are based on the average MAE over 200 simulations. Table 2-4 lists the 

average MAE of each benchmark imputation method and the average MAE of the 
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proposed method building upon the corresponding benchmark when 𝜓𝜓1 = 0, 5, or 10. 

The t-statistics for comparing the average MAE of the two methods across the two 

hundred replications of simulation are listed within the parentheses. It can be seen 

that when 𝜓𝜓1 is 5 or 10 (namely NMAR), under different missing value percentages, 

the proposed method reduces MAE; the difference in MAE between the proposed 

method and benchmarks in Table 2-4 is statistically significant at the 5% level. 

Results are qualitatively similar under other values of 𝜓𝜓1, as shown in Figure 2-3.  

Figure 2-3 presents the reduction percentage of MAE by our proposed 

imputation method. The reduction percentage of MAE is calculated as the reduction 

in MAE scaled by the value of the benchmark. Each line is plotted with the 

corresponding 95% confidence interval of the mean decrease percentage of MAE 

over 200 simulations. Figure 2-3 shows that our method increases the imputation 

accuracy of traditional imputation models under different missing percentages of 𝑧𝑧. It 

is worth emphasizing that, in Figure 2-3 (or Table 2-4), when 𝜓𝜓1 = 0, our method 

increases the MAE by 6.4% for SVM (radial kernel) and around 1% for the other five 

machine learning algorithms. This could be explained by the reason that, since the 

incomplete variable 𝑧𝑧 is a continuous random variable, we adopt a nonparametric 

method in Section 2.3.1.3 to approximate its conditional distribution based on its 

residuals, which introduces approximation error. However, the proposed method 

largely reduces the MAE when 𝜓𝜓1 is equal to or larger than one, which means that the 

benefit of incorporating the missingness mechanism largely exceeds the cost of 

approximation error in the nonparametric probability distribution estimation. 
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 Imputation Method Missingness Percentage 
20% 30% 40% 50% 60% 70% 80% 

𝜓𝜓1 
=0 

SVM (Linear) 
Benchmark 0.65 0.65 0.65 0.66 0.67 0.69 0.71 
Proposed 0.66 0.66 0.66 0.67 0.68 0.70 0.72 
t-statistic (-2.08) (-2.29) (-2.54) (-2.43) (-3.03) (-2.53) (-2.04) 

SVM (Radial) 
Benchmark 0.70 0.69 0.69 0.69 0.69 0.69 0.70 
Proposed 0.75 0.74 0.73 0.74 0.73 0.74 0.74 
t-statistic (-11.48) (-13.39) (-13.39) (-15.11) (-15.90) (-15.82) (-13.08) 

Neural Network 
Benchmark 0.70 0.70 0.69 0.69 0.70 0.71 0.75 
Proposed 0.71 0.71 0.69 0.69 0.70 0.70 0.73 
t-statistic (-1.33) (-1.28) (-1.00) (-0.61) (0.75) (1.18) (1.84) 

Decision Tree 
Benchmark 0.69 0.69 0.69 0.69 0.70 0.71 0.73 
Proposed 0.70 0.69 0.69 0.70 0.70 0.71 0.74 
t-statistic (-1.29) (-1.50) (-1.36) (-1.78) (-1.22) (-1.64) (-1.78) 

Random Forest 
Benchmark 0.70 0.69 0.69 0.69 0.68 0.69 0.70 
Proposed 0.71 0.70 0.69 0.69 0.69 0.69 0.70 
t-statistic (-2.60) (-2.18) (-1.22) (-2.78) (-0.80) (-0.87) (0.18) 

Gradient Boosting 
Benchmark 0.69 0.69 0.69 0.69 0.70 0.72 0.74 
Proposed 0.70 0.69 0.69 0.70 0.71 0.72 0.75 
t-statistic (-1.55) (-1.47) (-1.92) (-1.91) (-1.74) (-1.82) (-1.95) 

𝜓𝜓1 
=5 

SVM (Linear) 
Benchmark 1.28 1.21 1.19 1.20 1.24 1.32 1.45 
Proposed 1.17 1.09 1.06 1.08 1.14 1.24 1.39 
t-statistic (16.78) (20.18) (22.02) (24.70) (20.81) (17.25) (12.36) 

SVM (Radial) 
Benchmark 1.40 1.33 1.31 1.33 1.38 1.47 1.62 
Proposed 1.06 0.99 0.97 1.00 1.07 1.17 1.32 
t-statistic (66.96) (70.32) (76.03) (76.98) (77.02) (72.84) (67.35) 

Neural Network 
Benchmark 1.44 1.35 1.35 1.34 1.39 1.48 1.65 
Proposed 1.23 1.06 1.05 1.04 1.12 1.22 1.40 
t-statistic (19.71) (35.13) (17.86) (41.74) (40.87) (33.19) (28.15) 

Decision Tree 
Benchmark 1.42 1.34 1.32 1.33 1.37 1.45 1.59 
Proposed 1.22 1.07 1.04 1.07 1.14 1.25 1.40 
t-statistic (24.77) (43.69) (58.70) (50.03) (48.33) (43.47) (43.97) 

Random Forest 
Benchmark 1.48 1.39 1.36 1.36 1.40 1.48 1.63 
Proposed 1.30 1.08 1.04 1.06 1.12 1.23 1.39 
t-statistic (22.40) (50.06) (58.23) (71.42) (71.74) (68.22) (60.56) 

Gradient Boosting 
Benchmark 1.39 1.32 1.29 1.29 1.33 1.41 1.53 
Proposed 1.22 1.11 1.09 1.12 1.19 1.31 1.47 
t-statistic (24.37) (35.98) (40.13) (36.61) (31.78) (21.35) (11.45) 

𝜓𝜓1 
=10 

SVM (Linear) 
Benchmark 1.28 1.21 1.19 1.20 1.24 1.31 1.44 
Proposed 1.17 1.09 1.07 1.09 1.15 1.23 1.38 
t-statistic (17.69) (19.08) (19.21) (18.97) (17.67) (17.56) (12.21) 

SVM (Radial) 
Benchmark 1.40 1.32 1.31 1.33 1.38 1.47 1.62 
Proposed 1.06 0.98 0.97 1.00 1.06 1.17 1.32 
t-statistic (65.92) (68.35) (71.68) (74.89) (77.91) (77.83) (72.89) 

Neural Network 
Benchmark 1.45 1.36 1.35 1.35 1.39 1.49 1.66 
Proposed 1.26 1.05 1.02 1.04 1.11 1.22 1.40 
t-statistic (17.45) (35.67) (39.90) (43.98) (40.88) (33.07) (27.84) 

Decision Tree 
Benchmark 1.42 1.34 1.32 1.32 1.36 1.44 1.59 
Proposed 1.22 1.08 1.03 1.06 1.13 1.23 1.39 
t-statistic (23.37) (37.99) (53.61) (50.44) (50.82) (45.29) (43.00) 

Random Forest 
Benchmark 1.47 1.39 1.35 1.36 1.40 1.48 1.63 
Proposed 1.29 1.09 1.03 1.05 1.11 1.21 1.39 
t-statistic (22.11) (40.14) (64.07) (67.36) (79.62) (72.78) (66.20) 

Gradient Boosting 
Benchmark 1.39 1.32 1.29 1.29 1.33 1.40 1.53 
Proposed 1.22 1.11 1.08 1.12 1.19 1.30 1.46 
t-statistic (22.67) (32.87) (36.37) (32.40) (28.66) (21.43) (12.64) 

Table 2-4 Comparison of MAE under Different Missing Value Percentages 

Moreover, the proposed method obtains relatively stable MAE decrease 

percentage when 𝜓𝜓1 ranges from 1 to 10. Although the results might be subject to the 
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granularity of the values of 𝜓𝜓1 (i.e., we increase the value of 𝜓𝜓1 by 1 rather than a 

more refined magnitude such as 0.1), we observe a property of the proposed method 

that the error reduction is positive and tends to be stable even if 𝜓𝜓1 becomes large.  

  

  

  

Figure 2-3 Decrease Percentage of MAE by Semi-Supervised Imputation 
Method 

Finally, an interesting finding is that the effect of missing data percentage 

(e.g., 20%, 40%, 60%, 80%) on imputation accuracy is non-monotonic. We provide 

possible explanation by hypothesizing two extremes. When the missing data 

percentage is at the low extreme, the benchmark imputation model, even without 

considering the missingness mechanism, tends to approximate the underlying 

relationship between the incomplete variable and complete variables well, thus the 
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benefit of modeling the missingness mechanism tends to be limited. When the 

missing data percentage is at the high extreme, the data for estimating the conditional 

probability or distribution of the incomplete variable, which is required by the 

proposed method, is limited. Thus, the effectiveness of incorporating the missingness 

mechanism into imputation is also reduced. It would be a promising future research 

direction to investigate the influence of missing value percentage, in addition to the 

missingness mechanism, on the choice of missing value handling methods. 

Table 2-5 reports MAE results of the linear imputation models: (1) simple 

linear imputation, (2) the proposed semi-supervised imputation approach, and (3) the 

miceMNAR approach with values of 𝜓𝜓1 being 0, 2, 4, 6, 8, 10. The standard 

deviations of MAE over two hundred simulation replications are listed in parentheses. 

To facilitate the comparison of imputation accuracy, Figure 2-4 shows imputation 

accuracy of the linear imputation models: (a) the MAE of simple linear imputation, 

(b) the reduction percentage of MAE by the proposed semi-supervised imputation 

approach compared to simple linear imputation, (c) the reduction percentage of MAE 

by the miceMNAR approach compared to simple linear imputation, and (d) the MAE 

difference between miceMNAR and the proposed approach (i.e., MAE of 

miceMNAR minus that of the proposed approach).  

From Figure 2-4(b) (or comparing results of the linear models in Table 2-5), 

we observe that the proposed method enhances imputation accuracy over all the non-

zero values of 𝜓𝜓1 and different missing value percentages (the MAE decrease 

percentage generally ranges from 10% to 20%). When 𝜓𝜓1 = 0, it obtains close 

performance as the simple linear imputation model. From Figure 2-4(c), we observe 

that miceMNAR generally enhances imputation accuracy when 𝜓𝜓1 = 1, 2, … and the 

missing value percentage is no more than 60% (the MAE decrease percentage 

generally ranges from 40% to 60%). However, when 𝜓𝜓1 = 0, the imputation error 

largely increases. When the missing value percentage is as high as 70%, miceMNAR 
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reduces MAE by a limited extend. When the missing value percentage is 80%, it 

often results in increased MAE than the simple linear imputation model, meaning that 

it could be harmful to incorporate the missingness mechanism through miceMNAR 

when the underlying missingness mechanism tends to be MAR.  

Imputation Method Missingness Percentage 
20% 30% 40% 50% 60% 70% 80% 

𝜓𝜓1 = 0 

Simple linear 0.66 0.68 0.71 0.74 0.79 0.87 1.09 
(0.03) (0.02) (0.03) (0.03) (0.04) (0.06) (0.09) 

Proposed 0.69 0.71 0.73 0.77 0.81 0.90 1.14 
(0.04) (0.04) (0.05) (0.06) (0.07) (0.08) (0.13) 

miceMNAR 0.86 1.03 1.18 1.37 1.60 1.94 2.62 
(0.05) (0.07) (0.07) (0.08) (0.11) (0.18) (0.24) 

𝜓𝜓1 = 2 

Simple linear 1.30 1.24 1.22 1.22 1.25 1.29 1.39 
(0.05) (0.04) (0.05) (0.04) (0.05) (0.05) (0.07) 

Proposed 1.09 1.05 1.04 1.05 1.08 1.15 1.25 
(0.10) (0.08) (0.09) (0.08) (0.07) (0.08) (0.11) 

miceMNAR 0.68 0.58 0.53 0.52 0.59 1.02 2.72 
(0.03) (0.02) (0.02) (0.05) (0.11) (0.40) (0.97) 

𝜓𝜓1 = 4 

Simple linear 1.31 1.25 1.23 1.23 1.25 1.30 1.40 
(0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.06) 

Proposed 1.11 1.04 1.03 1.06 1.08 1.15 1.26 
(0.09) (0.09) (0.08) (0.08) (0.07) (0.08) (0.11) 

miceMNAR 0.69 0.59 0.54 0.53 0.62 1.17 2.15 
(0.03) (0.02) (0.02) (0.06) (0.19) (0.47) (0.85) 

𝜓𝜓1 = 6 

Simple linear 1.31 1.25 1.23 1.24 1.25 1.31 1.40 
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.06) 

Proposed 1.09 1.02 1.02 1.05 1.09 1.17 1.27 
(0.09) (0.08) (0.08) (0.08) (0.07) (0.08) (0.09) 

miceMNAR 0.65 0.58 0.54 0.53 0.59 1.11 1.41 
(0.03) (0.02) (0.02) (0.07) (0.12) (0.50) (0.64) 

𝜓𝜓1 = 8 

Simple linear 1.31 1.25 1.23 1.23 1.26 1.31 1.41 
(0.05) (0.05) (0.04) (0.04) (0.05) (0.05) (0.07) 

Proposed 1.10 1.05 1.02 1.05 1.09 1.16 1.28 
(0.09) (0.08) (0.08) (0.07) (0.07) (0.08) (0.10) 

miceMNAR 0.63 0.59 0.53 0.53 0.64 0.92 0.95 
(0.03) (0.02) (0.02) (0.06) (0.16) (0.37) (0.43) 

𝜓𝜓1 = 10 

Simple linear 1.30 1.26 1.24 1.23 1.26 1.30 1.39 
(0.05) (0.04) (0.04) (0.04) (0.05) (0.05) (0.06) 

Proposed 1.07 1.05 1.04 1.05 1.09 1.16 1.25 
(0.09) (0.08) (0.08) (0.07) (0.08) (0.08) (0.10) 

miceMNAR 0.60 0.58 0.54 0.53 0.60 0.71 0.75 
(0.02) (0.02) (0.03) (0.08) (0.15) (0.24) (0.28) 

Table 2-5 Imputation Accuracy (MAE) Using Linear Imputation Models 
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(a) (b) 

  
(c) (d) 

  

Figure 2-4 Comparison of Imputation Accuracy of Linear Imputation Models 

The performance of miceMNAR over the proposed method when 𝜓𝜓1 equals 

1, 2, 3, …, with the missing value percentage being moderate can be explained by the 

maximum likelihood estimator for the Heckman model (step 1 of miceMNAR). 

Although the proposed method gains theoretical support in that it enhances the 

imputation accuracy compared to the benchmark of the simple linear imputation 

model, it does not necessarily obtain estimates of parameters that maximize the 

objective likelihood function, whereas the multiple imputations of miceMNAR are 

created based on the maximum likelihood estimator for the Heckman model. It can be 

shown that the Heckman model is equivalent to the model of missingness mechanism 

up to different parameterizations (Galimard et al. 2016).  

When it comes to the MAR mechanism, namely 𝜓𝜓1 = 0, there is little 

advantage in incorporating the missingness mechanism. Since miceMNAR requires 

normal distributional assumption for the error term, which is violated in our 
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simulation setting, it leads to increased imputation error when 𝜓𝜓1 = 0. The increase 

in imputation error is exacerbated as the missing value percentage increases (e.g., at 

80%). This can be explained by the increasing variance (uncertainty) of the maximum 

likelihood estimator for the Heckman model with fewer complete observations. 

Finally, estimating the Heckman model requires the exclusion-restriction criteria to 

avoid collinearity issues; that is, at least one covariate is included in the missingness 

mechanism and not in the imputation model. In practical implementation, researchers 

need to specify such covariate based on their own domain knowledge. Although such 

a covariate is not available in our simulation setting, both the proposed method and 

miceMNAR are evaluated with a level playing field.  

Overall, by comparing the linear imputation models, we show that the 

miceMNAR method tends to achieve better imputation performance than the 

proposed method when the missing value percentage is low or moderate and when 

there is a strong reason to suspect that the missingness mechanism is NMAR. The 

proposed method is resilient to the non-normal distribution of the error term in the 

imputation model and does not harm imputation accuracy when the missingness 

mechanism tends to be MAR. Since researchers often do not have the prior 

knowledge on the extent of NMAR, it is necessary to employ an imputation method 

that is robust over the full spectrum from MAR to NMAR. Finally, with the 

generalizability of the proposed method to imputation model based on machine 

learning, the proposed method possesses important qualities for practical concerns. 

2.4.2 Experimentation in Real-world Data Sets 

The missing values problem is ubiquitous in real-world data analytics. We use two 

real-world data sets to examine the effectiveness of the proposed method. Both data 

sets may arguably satisfy the NMAR missing mechanism. Hence, we use the 

proposed imputation method to impute the most important variables for these two 
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prediction tasks. Since the underlying true values of the missing values are unknown, 

we cannot use imputation accuracy as the evaluation metric. Instead, we indirectly 

show the imputation accuracy by comparing the prediction error after the incomplete 

predictor is imputed by different imputation methods. Therefore, in this section, 

different imputation methods are evaluated according to the prediction accuracy of a 

machine learning model built upon the imputed datasets, which complements the 

evaluation procedure in Section 2.4.1. The main prediction model used in this section 

is the state-of-the-art GBM algorithm.14 Since the initial ideas of gradient boosting 

(Friedman 2001), various extension models have been proposed, such as XGBoost 

(Chen and Guestrin 2016) and LightGBM (Ke et al. 2017). These extensions often 

achieve comparable prediction accuracy (Ke et al. 2017). By experimenting with the 

well-studied GBM algorithm, we expect that the results would hold in general. The 

imputation models are trained with the same six algorithms used in Section 2.4.1. 

2.4.2.1 Credit Default Prediction  

Data Description 

The “Home Credit Default Risk” task from a recent Kaggle competition asked to 

predict whether each applicant will repay their loan according to the applicant’s 

information provided by the Home Credit Group, an international consumer finance 

provider. 

The records in the data set are at the loan application level. There are 307,511 

records and 121 predictor variables, which cover various aspects of the applicants, 

such as credit scores from third-party agencies, real-estate ownership status, 

employment status, and loan amount. After applying one-hot encoding to transform 

 
14 We use the fitensemble function (www.mathworks.com/help/stats/fitensemble.html) of 
Matlab, for the GBM implementation of Friedman (2001). 

http://www.mathworks.com/help/stats/fitensemble.html
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the categorical variables, we obtained 239 predictor variables.15 Based on the GBM 

importance score, Figure 2-5 lists the top ten important variables for predicting loan 

default (importance scores are normalized so that the importance scores of all the 239 

variables add up to one).16 The three most important variables are: EXT_SOURCE_1, 

EXT_SOURCE_2, and EXT_SOURCE_3. These are the credit scores (continuous 

variables) provided by third-party agencies. Each of the three variables contains 

missing values, with the missing rate being 56.4%, 19.8%, and 0.2%, respectively. 

Given that variable EXT_SOURCE_1 has the highest importance score and a severe 

missing values problem, we impute the missing values of this variable with our semi-

supervised imputation method. 

 
Figure 2-5 Top Ten Important Variables for Predicting Loan Default 

In addition to the variable EXT_SOURCE_1, a large number of variables of 

the data set are subject to missing values. To isolate the effectiveness of our 

imputation method on the focal variable, we constructed the following sampling 

steps, which were summarized in Table 2-6. We first selected the top 100 important 

 
15 One-hot encoding is a common process by which categorical variables are converted into a 
numeric form that could be provided to ML algorithms. For instance, the variable 
WEEKDAY_APPR_ START indicates on which day of the week did the client apply for the 
loan. The value for that variable is of string type and comes from {Monday, Tuesday, …, 
Sunday}. To convert this categorical variable to a numeric one, we construct seven dummy 
variables indicating each of the weekday.  
16 The predictor importance is calculated by summing changes in the performance matric (e.g., 
mean squared error (MSE)) due to splits on every predictor and dividing the sum by the 
number of branch nodes. The change in performance associated with a split is computed as the 
difference between MSE for the parent node and the total MSE for the two children. 
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variables and then dropped the variables with a missing rate larger than 60%, which 

resulted in 11 variables being dropped. Among the remaining 89 variables, 12 of 

them were still incomplete. We then dropped rows with missing values for any of the 

12 variables except for EXT_SOURCE_1, since the missing values of this variable 

will be imputed. Finally, we obtained 201,092 records, and the variable 

EXT_SOURCE_1 is missing in 102,562 records (missing rate of 51.0%).17 

Data Processing Steps Number of 
Predictors 

Number of 
Records 

Raw data set 121 307,511 
One hot encoding 239 307,511 

Select top 100 important variables and drop the ones 
with missing value percentage larger than 60% 89 307,511 

Drop records with missing values for any of the 11 
incomplete variables 89 201,092 

Table 2-6 Credit Default Prediction - Data Pre-processing and Sample 
Construction Process 

Experimentation Results 

After the sample construction process, only the predictor variable EXT_SOURCE_1 

contains missing values. This variable is imputed with all the other complete 

predictors using different imputation methods listed in Table 2-7, with the 

missingness mechanism being estimated with a logit model. Then the GBM is applied 

to the imputed data set (with no missing values) to develop the prediction model and 

to conduct the prediction. In the “Home Credit Default Risk” competition, since the 

target variable is unbalanced (with the default rate being 8.4%), the organizer 

employed AUC metrics to evaluate the prediction performance. In this 

experimentation, we report the averaged AUC by five-fold cross-validation tests. 

Table 2-7 summarizes the prediction performance of the GBM algorithm using the 

data set imputed by different methods. Results are qualitatively similar using different 

random sampling to form the five-fold tests . Columns 2 and 3 report the prediction 

 
17 Imputing all incomplete variables would be computationally costly and even bring much 
noise into the data. Therefore, we choose to impute EXT_SOURCE_1, the variable with the 
highest importance ranking in making prediction and a high percentage of missing values.  
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performance after the incomplete variable is imputed by the traditional method and 

new method, respectively. Standard deviations of AUC over the five-fold tests are 

reported in the corresponding parentheses. The improved prediction performance 

(percentage increase of AUC) is reported in Columns 4.  

Benchmark 
Imputation  

AUC of 
Benchmark 

AUC of 
Proposed 

Proposed vs.                                                    
Benchmark 

SVM (Linear) 0.7030 
(0.0170) 

0.7222 
(0.0298) 2.73% 

SVM (Radial) 0.6905 
(0.0130) 

0.7133 
(0.0175) 3.30% 

Neural-2 0.7068 
(0.0134) 

0.7089 
(0.0120) 0.30% 

Decision Tree 0.7109 
(0.0169) 

0.7031 
(0.0139) -1.10% 

Random Forest 0.7013 
(0.0236) 

0.7102 
(0.0191) 1.27% 

Gradient 
Boosting 

0.7073 
(0.0193) 

0.7112 
(0.0260) 0.55% 

Table 2-7 Credit Default Prediction - AUC Using Different Missing Value 
Handling Methods 

The results in Table 2-7 show that the proposed method outperforms the 

benchmark imputation method, including SVM, neural network, random forest, and 

gradient boosting. Compared to SVM (linear) imputation, the proposed method 

improves the prediction accuracy by 2.73%. When compared to the state-of-the-art 

gradient boosting algorithm for imputation, our method still improves the prediction 

accuracy by 0.55%. Without a pre-processing step of imputing missing values, GBM 

algorithm has an embedded way of handling missing values through the surrogate 

variable method, achieving an AUC of 0.7046. This is lower than the AUC using 

benchmark imputations of neural network, decision tree, and gradient boosting.18 

 
18 A surrogate is a substitute for the primary splitter of a node. A good surrogate splits the data 
in similar way as the primary split. Namely, we are looking for a variable that closely 
approximate the behavior of the primary split. This technology is invented in the 
Classification and Regression Trees, CART (Breiman et al. 1984). Moreover, to exclude the 
possibility that results may be driven by the sample construction process described in Table 2-
6, we conduct the experimentation under the situation that no observations or variables are 
dropped. Under such situation, the GBM using the default surrogate method achieves an 
accuracy of 0.7063. Compared with the AUC after the sample selection process, which is 
0.7046, the difference 0.2% is minimal.  
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It is worth noting that the proposed method does not generate better 

prediction performance when the baseline imputation method is the decision tree. A 

possible reason is that our method is theoretically demonstrated to outperform the 

benchmark imputation method when the benchmark imputation method is parametric. 

However, the theoretical property is not proved under the nonparametric situation. 

Although so far there is no clear boundary for dividing machine learning algorithms 

into parametric and nonparametric ones, decision tree is sometimes viewed as a 

nonparametric model (Stekhoven and Bühlmann 2012).19 In practical applications, we 

recommend using the proposed method to increase the benchmark imputation 

methods, such as linear SVM, neural network, random forest, and gradient boosting 

to achieve relatively robust results as shown in the simulations and real-world 

experimentations.  

2.4.2.2 Earnings Prediction 

Data Description 

The second data set is used to predict the quarterly earnings of US public firms based 

on financial statements and analyst consensus forecasts. This data set is another good 

example that shows the importance of taking into account the NMAR mechanism for 

missing value imputation. The extant literature shows that analyst forecast data is 

often not available for small firms and financially distressed firms (Diether et al. 

2002), which suggests that the analyst consensus forecasts are likely to be NMAR.  

The records in this data set are at the firm-quarter level. For each record, 

there are 362 variables from firms’ quarterly financial statements, which are provided 

 
19 An omnipotent definition of nonparametric model is still under-developed. According to the 
definitions by Russell and Norvig (2016, Chapter 10.8), “…. A learning model that 
summarizes data with a set of parameters of fixed size (independent of the number of training 
examples) is called a parametric model…. A nonparametric model is one that cannot be 
characterized by a bounded set of parameters.” In this chapter, only K-nearest neighbor is 
acknowledged as a nonparametric method. 
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by the Compustat database. The analyst consensus forecast is provided by the I/B/E/S 

database. In total, 363 variables are used for building the prediction model by GBM. 

The data set contains 120 quarters starting from 1987 Q1 to 2016 Q4. On average, 

there are 3,164 firms in each quarter. We conducted the prediction on quarterly 

earnings in 107 consecutive quarters from 1990 Q1 to 2016 Q3. The last quarter of 

earnings prediction is 2016 Q3 because the next quarter’s earnings are required to 

measure the accuracy of the current quarter’s prediction. 

During the forecast in each quarter, we used the same quarter data from the 

past three years to construct the prediction model. We illustrate the construction of 

the training and test datasets in Figure 2-6.  

For fiscal quarter 2003 Q1, we used the financial statement data items of 

2003 Q1 and the consensus forecast for 2003 Q2, 363 variables in total, to make 

predictions for the next quarter’s earnings (of 2003 Q2). The training data set for 

building the prediction model consists of the corresponding predictors and the 

dependent variable in three fiscal quarters, 2002 Q1, 2001 Q1, and 2000 Q1.  

 
Figure 2-6 Illustration of Training and Test Data Sets Construction 
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Figure 2-7 Top Ten Important Variables for Predicting Earnings 

We conducted a preliminary analysis to find the important variables using 

GBM. Figure 2-7 lists the top ten important variables for predicting the next quarter’s 

earnings. It is shown that, medest (analyst consensus forecast measured by the median 

of analysts’ earnings estimation) and y_t (actual earnings of the current quarter) are 

the two most important variables, and these two variables have much higher 

importance scores than all other variables. As for the missing values, y_t is a 

complete variable and medest is missing for 40.7% of the records. Therefore, in the 

earnings prediction task, we impute the important predictor, medest, aiming at 

enhancing the prediction accuracy. 

Missing Value 
Percentage Number of Predictors Number of Predictors 

(in Percentage) 
0      ≤ percentage <20% 170 46.83% 
20% ≤ percentage <40% 76 20.94% 
40% ≤ percentage <60% 22 6.06% 
60% ≤ percentage <80% 13 3.58% 
80% ≤ percentage ≤100% 82 22.59% 

Total 363 100.00% 

Table 2-8 Earnings Prediction - Missing Value Percentage of Predictors 

In addition to the variable medest, the variables from Compustat include 

missing values to different extents. Table 2-8 lists the missing value percentage in this 

data set.  
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Imputing the missing values for all the variables would be time consuming 

and computationally taxing. A common practice in accounting research is to replace 

the missing values in financial statements with 0 (Koh and Reeb 2015; Li and 

Mohanram 2014). This missing value handling method is reasonable, since firms do 

not report data items when the amount incurred is immaterial. We handle the missing 

variables from Compustat following this practice. Admittedly, our choice is subject to 

some limitations, since the underlying assumption is that missing values in financial 

statements are negligible. However, this pre-processing step does not seem to favor 

our method, and therefore it also serves as the robustness check in that our method 

can outperform traditional methods when the other missing values are handled 

differently, as mentioned in Section 2.4.2.1. 

Experimentation Results 

Since quarterly earnings is a continuous variable, its prediction is a regression 

problem. We therefore use the absolute prediction error of raw earnings scaled by 

firms’ market capitalization as the evaluation metrics following the earnings 

prediction literature (Hou et al. 2012; Li and Mohanram 2014).  

Benchmark 
imputation  

MAE of 
Benchmark 

MAE of 
Proposed 

Proposed vs.                                                    
Benchmark 

SVM (Linear) 0.1295 0.1230 5.28% 
SVM (Radial) 0.1005 0.1002 0.30% 

Neural-2 0.1083 0.1061 2.07% 
Decision Tree 0.1029 0.1015 1.38% 

Random Forest 0.1063 0.1061 0.19% 
Gradient Boosting 0.1129 0.1107 1.99% 

Table 2-9 Earnings Prediction - MAE Using Different Missing Value Handling 
Methods 

Table 2-9 summarizes the prediction performance using the data set imputed 

by different methods. The results of the scaled mean absolute error (MAE) in Table 

2-9 are averaged across all firm-quarter pairs (330,672 rows in total). Columns 2 and 

3 report the prediction performance after the incomplete variable is imputed by the 

benchmark method and the proposed method, respectively. The percentage decrease 
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of MAE for earnings prediction is reported in Columns 4. Results demonstrate that 

our method outperforms the various benchmark imputation methods. Using simple 

mean imputation, the prediction error is 0.1154, higher than that of benchmark 

imputation methods using SVM (radial), neural network, decision tree, and random 

forest. Without the machine learning prediction model GBM, using the simple 

moving average (MA) model gives prediction errors of 0.1227 (MA(4)).  

2.5 Evaluation of Monte Carlo Likelihood Estimation of Regression 

Coefficients 

In this section, we experiment commonly used approaches such as listwise deletion, 

and the well-established likelihood-based approach, maximum likelihood estimation 

assuming MAR (denoted with ML-MAR thereafter). We first discuss how the 

problem emerges that the endogenous sample selection interacts with the NMAR 

mechanism, then we illustrate the operating characteristics of different missing value 

handling methods, including our proposed Monte Carlo-based approach. 

2.5.1 Simulation Setting 

We perform a simulation for the estimation of regression coefficients in the following 

model: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑧𝑧 + 𝜀𝜀, 

where �𝑥𝑥𝑧𝑧�~𝑁𝑁(𝜇𝜇,𝜎𝜎2) , 𝜇𝜇 = �00�, 𝜎𝜎
2 = � 1 0.5

0.5 1 � , 𝜀𝜀~𝑁𝑁(0,1).  The values of 

coefficients are set to 𝛽𝛽0  =  0, 𝛽𝛽1 =  1 and 𝛽𝛽2 = −1.  

One thousand data samples of the values of (𝑥𝑥, 𝑧𝑧,𝑦𝑦) are drawn from the above 

data generating process.20  Missing values are imposed on variable 𝑧𝑧 according to the 

missingness mechanism represented by the following logistic model: 

 
20 Results are qualitatively similar for sample size of 500 and 200. We did not experiment with 
small sample sizes such as 50 since we expect that researchers in today’s big data environment 
often have a large sample size but are likely to face nontrivial amount of missing values. 
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𝑝𝑝(𝑠𝑠 = 1|𝑥𝑥,𝑦𝑦, 𝑧𝑧;𝝍𝝍) =
1

1 + 𝑒𝑒−�𝜓𝜓0+𝜓𝜓𝑥𝑥𝑥𝑥+𝜓𝜓𝑦𝑦𝑦𝑦+𝜓𝜓𝑧𝑧𝑧𝑧�
 

where parameter 𝜓𝜓𝑥𝑥 is fixed at zero. We vary the missingness mechanism by 

allowing coefficients 𝜓𝜓𝑧𝑧 and 𝜓𝜓𝑦𝑦  to take values in {0, 2, 4, 6}. The missing value 

percentage is set to 10%, 20%, and 30% by solving the intercept term 𝜓𝜓0.  

In general regression analysis, the missing values on independent variables or 

dependent variables are not fundamentally different. So long as the missingness (of 

the independent or the dependent variable), does not depend on the dependent 

variable, dropping the incomplete observations (i.e., applying listwise deletion) will 

yield approximately unbiased estimates of regression coefficients (Little 1992; 

Schafer and Graham 2002). Therefore, the bias occurs when the missingness depends 

on the dependent variable, which leads to the endogenous sample selection.  

When 𝜓𝜓𝑧𝑧 is non-zero, the missingness mechanism becomes NMAR, which 

makes ML-MAR invalid. When 𝜓𝜓𝑦𝑦 is non-zero, the coefficient estimation, if 

dropping incomplete observations, is subject to the endogenous sample selection 

problem. In other words, ML-MAR and listwise deletion generate approximately 

unbiased estimation only under the special case of 𝜓𝜓𝑧𝑧 =  0 and 𝜓𝜓𝑦𝑦 = 0.  This 

observation is illustrated in Figure 2-8 below. 

 
Figure 2-8 Handling Missing Values in Regression Analysis 

The key point here is that, in general situations that 𝜓𝜓𝑧𝑧 ≠ 0 and 𝜓𝜓𝑦𝑦 ≠ 0, 

neither listwise deletion nor ML-MAR are valid approaches to handling missing 



66 

 

values. To handle the more general situation, we need to enhance the ML-MAR to 

make it robust to the NMAR mechanism, that is to employ the Monte Carlo 

maximum likelihood estimation.  

2.5.2 Simulation Results 

We present the results by listwise deletion and ML-MAR under different values of 𝜓𝜓𝑧𝑧 

and 𝜓𝜓𝑦𝑦 in Figures 2-9 and 2-10, respectively. The spectrum from white to black 

represents increasing absolute bias averaged across the three regression coefficients.21  

Results are based on 400 replications of the simulation.22 

Figure 2-9 shows that, under listwise deletion, the bias is approximately zero 

for 𝜓𝜓𝑦𝑦= 0 despite the value of 𝜓𝜓𝑧𝑧.  This corresponds to the horizontal axis in Figure 

2-8. It is also well-known that estimations of coefficients are unbiased under listwise 

deletion if the missingness results in exogenous sample selection. However, the 

potentially detrimental effects of listwise deletion are evident when 𝜓𝜓𝑦𝑦 becomes non-

zero. Moreover, the bias gets more severe as the missing value percentage increases. 

A rule of thumb is that problematic levels of bias occur when the absolute value of 

the bias is greater than about one half of the estimate’s standard error (Schafer and 

Graham 2002). Given the data generating process in our simulation setting, standard 

errors of coefficients, β0, β1 and β2 are around 0.03 if there were no missing values. 

Therefore, even under a moderate 10% missing value percentage, listwise deletion 

could result in problematic bias in coefficient estimation. 

Figure 2-10 shows that, departures from MAR cause the performance of ML-

MAR estimation to also be degraded. Under ML-MAR, bias is approximately zero for 

 
21 Results of other commonly used missing values handling methods in empirical studies (e.g., 
conditional mean imputation and zero/mean substation, and multiple imputation) are presented 
in Appendix 1.4.2. These methods generally cause bias under different values of 𝜓𝜓𝑧𝑧, 𝜓𝜓𝑦𝑦 and 
missing value percentage. 
22 We conducted a pilot analysis to investigate the number of replications of the simulation 
that is necessary to obtain stable measures of bias. Results show that, the averaged 
performance over 200 or more rounds of simulation are stabilized. To be conservative, in our 
experimentation, we run 400 replications for each simulation setting. 
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𝜓𝜓𝑧𝑧 = 0 despite the value of 𝜓𝜓𝑦𝑦.  This corresponds to the vertical axis in Figure 2-8. 

However, this property of ML-MAR does not hold when 𝜓𝜓𝑧𝑧 ≠ 0.  In addition, when 

we compare Figures 2-9 and 2-10, the bias of ML-MAR estimation under the NMAR 

mechanism tends to be less than the bias of listwise deletion under endogenous 

sample selection. Although results depend on the parameter setting of the simulation, 

there has been much evidence that, principled methods such as maximum likelihood 

and multiple imputation, tend to perform better than ad hoc methods  (Rubin 1996; 

Schafer and Olsen 1998; Schafer and Graham 2002; Buhi et al. 2008; Newman 2014).  

Overall, we emphasize two considerations in determining whether missing 

values is problematic. The first is missing value percentage – as the proportion of 

missing values becomes greater, the chosen method will exert a higher degree of 

influence over the results, and differences among competing methods will be 

magnified.  The second consideration is the missingness mechanism. A stronger 

MNAR mechanism makes the ML-MAR approach generate biased estimation; 

endogenous sample selection makes the listwise deletion invalid.  

Figure 2-11 shows the coefficient estimation results using our Monte Carlo 

likelihood estimation method that incorporates the missingness mechanism. Results 

shows that the estimations of regression coefficients are approximately unbiased 

across different combinations of 𝜓𝜓𝑧𝑧, 𝜓𝜓𝑦𝑦and missing value percentages.  
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a. 10% missing b. 20% missing c. 30% missing 

   
Figure 2-9 Bias of Regression Coefficients Using Listwise Deletion 

a. 10% missing b. 20% missing c. 30% missing 

   
Figure 2-10 Bias of Regression Coefficients Using ML-MAR 
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  β0 β1 β2 
Method   𝜓𝜓𝑧𝑧        𝜓𝜓𝑦𝑦 0 2 4 6 0 2 4 6 0 2 4 6 
Listwise 
Deletion 

0 0.001 0.369*** 0.437*** 0.454*** 0.005 -0.229*** -0.303*** -0.324*** -0.019** 0.229*** 0.302*** 0.323*** 
2 0.001 0.366*** 0.445*** 0.457*** 0.003 -0.226*** -0.324*** -0.346*** -0.004 0.001 0.161*** 0.229*** 
4 0.002 0.332*** 0.432*** 0.464*** 0.000 -0.157*** -0.301*** -0.345*** 0.000 -0.155*** 0.001 0.115*** 
6 0.002 0.280*** 0.416*** 0.451*** 0.006*** -0.097*** -0.247*** -0.320*** -0.005* -0.191*** -0.121*** 0.003 

ML-
MAR 

0 -0.001 0.000 0.002 0.000 0.020*** 0.000 -0.002 0.000 -0.032*** -0.001 0.000 -0.001 
2 0.204*** 0.191*** 0.138*** 0.097*** -0.045*** -0.082*** -0.054*** -0.037*** -0.072*** -0.070*** -0.039*** -0.026*** 
4 0.286*** 0.294*** 0.241*** 0.193*** -0.081*** -0.128*** -0.122*** -0.089*** -0.112*** -0.160*** -0.091*** -0.056*** 
6 0.314*** 0.335*** 0.307*** 0.258*** -0.084*** -0.133*** -0.149*** -0.134*** -0.136*** -0.196*** -0.152*** -0.095*** 

ML-
Monte 
Carlo 

0 -0.009 -0.002 -0.002 -0.001 0.010* -0.005** -0.003 -0.001 -0.019*** 0.008*** 0.004** 0.002 
2 0.103*** 0.015*** 0.001 -0.002 -0.018*** -0.009*** 0.000 -0.001 -0.044*** -0.002 0.001 0.000 
4 0.015*** 0.008*** -0.002 0.002 -0.003 -0.005** -0.004* 0.000 -0.009*** -0.009*** 0.004 0.002 
6 0.004* 0.002 0.001 0.000 0.005** -0.003 0.000 -0.003 -0.005** 0.000 0.001 0.005** 

Note: 1%, 5%, and 10% statistical significance are shaded and indicated with ∗∗∗, ∗∗, and ∗, respectively. 

Table 2-10 Estimation of Beta Coefficients (Missing Value Percentage = 30%) 

a. 10% missing b. 20% missing c. 30% missing 

   
Figure 2-11 Bias of Regression Coefficients Using Monte Carlo Likelihood Estimation 
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Table 2-10 details the results of each of the three regression coefficients with 

30% missing value percentages.23  The values in the table are the mean bias of 

coefficient estimation over 400 replications of the simulation. The significance levels 

are for testing that the mean bias of coefficient estimation equals to zero.  The results 

show that listwise deletion generates approximately unbiased parameter estimation 

when 𝜓𝜓𝑦𝑦= 0, while maximum likelihood assuming MAR (ML-MAR) is 

approximately unbiased when  𝜓𝜓𝑧𝑧= 0. When  𝜓𝜓𝑧𝑧≠ 0 or 𝜓𝜓𝑦𝑦≠ 0, the bias becomes 

significant and severe for listwise deletion and ML-MAR. With the Monte Carlo 

likelihood estimation, we incorporated the missingness mechanism into the likelihood 

model which makes it robust to the NMAR mechanism (ML-NMAR). Estimation 

results are approximately unbiased under different values of 𝜓𝜓𝑦𝑦and  𝜓𝜓𝑧𝑧 (with fewer 

cells having significantly biased parameter estimation and overall lower magnitude in 

the bias24). Since the standard errors of the coefficients, β0, β1 and β2 are around 0.03, 

the few biased cells are unlikely to result in problematic estimates based on the 

benchmark of one half of the standard error (Schafer and Graham 2002). 

 Missingness Mechanism 
Missing Value Handling Methods  MCAR MAR NMAR 
Listwise deletion Unbiased Biased Biased* 
ML ignoring missingness mechanism Unbiased Unbiased Biased 
ML incorporating missingness mechanism Unbiased Unbiased Unbiased 

Note: * A special case where listwise deletion generates unbiased estimation for regression 
coefficients under the NMAR mechanism is when 𝜓𝜓𝑦𝑦= 0 and 𝜓𝜓𝑧𝑧≠ 0. 

Table 2-11 Comparing Frequently Used Missing Value Handling Methods  

Table 2-11 summarizes the implication of missingness mechanism on the 

validity of different missing value handling methods based on the simulation analysis, 

which is largely consistent with the discussion by Newman (2014).25 Given that 𝜓𝜓𝑥𝑥is 

 
23 Appendix 1.4.1 presents results for different missing value percentages from 10% to 40%. 
24 Although the bias is significant for certain cells of the table, the magnitude is generally 
around or less than 0.01, which is much less than that of listwise deletion or ML-MAR. 
25 Results of zero substitution, mean substitution, and conditional mean imputation in 
Appendix 1.4.2 show that the bias exists regardless the missingness mechanism. Multiple 
imputation behaves qualitatively the same way with maximum likelihood estimation that 
ignores the missingness mechanism. 
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fixed at zero, the MCAR mechanism corresponds to the setting where 𝜓𝜓𝑦𝑦= 𝜓𝜓𝑧𝑧= 0; the 

MAR mechanism when 𝜓𝜓𝑦𝑦≠ 0 and 𝜓𝜓𝑧𝑧= 0; and NMAR to the more general situation 

that 𝜓𝜓𝑧𝑧≠ 0. Listwise deletion is valid under the MCAR situation. Moreover, a special 

case for listwise deletion being unbiased under NMAR is that the missing of z only 

depends on z itself (i.e., 𝜓𝜓𝑦𝑦= 0 and 𝜓𝜓𝑧𝑧≠ 0).  In this sense, although whether the 

NMAR mechanism is at play is not directly testable, the endogeneity of sample 

selection can be investigated by testing whether the response indicator is associated 

with the dependent variable (Schlomer et al. 2010). However, this is only feasible 

when the missing values occur in the independent variable. When the dependent 

variable is missing and the missingness depends on the variable itself, the problem 

becomes a case of the Heckman selection model as mentioned earlier. Maximum 

likelihood estimation ignoring the missingness mechanism eliminates the bias under 

the MCAR and MAR mechanisms but leads to biased estimation under the NMAR 

mechanism. The method which is robust to different missingness mechanisms is 

maximum likelihood estimation incorporating the missingness mechanism, wherein 

parameters are estimated using the Monte Carlo likelihood approach. 

 
We further experimented the proposed approach in two alternative simulation 

scenarios to show its robustness to the mis-specification of the missingness 

mechanism and its generalizability. First, we let the underlying missingness 

mechanism to be represented with a probit model whereas specify it to be a logit 

model during the parameter estimation process. Second, we extend the linear 

regression model to a generalized linear form where the relationship between the 

dependent variable and independent variables is represented with a logit model. Our 

proposed approach generally produces unbiased coefficients estimates. Results are 

presented in Appendix 1.4.3. Our computational approach can be extended to handle 

the situation where both dependent and independent variables are subject to missing 

values. We present these results in Appendix 1.4.4. 
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2.6 Discussion 

Missing values are a ubiquitous problem faced by data scientists. The statistics and 

data analytics literatures have attempted to tackle the missing values problem from 

different perspectives. Our approaches to this problem are to integrate the 

missingness mechanism into the traditional imputation process to improve the 

robustness to different missingness mechanisms including NMAR.  

This proposed semi-supervised missing value imputation approach 

distinguishes itself from existing methods in two aspects. First, current statistics 

models under the broad maximum likelihood or multiple imputation approaches 

rarely consider the NMAR mechanism (Schafer and Graham 2002). Moreover, 

compared to the existing statistical methods, our non-parametric implementation does 

not assume joint distribution—often multivariate normal distribution—of variables in 

the data matrix (Allison 2009).  Second, although data mining studies have explored 

and evaluated different machine learning algorithms for enhancing missing value 

imputation accuracy (e.g., Luengo et al. (2012) and Saar-Tsechansky and Provost 

(2007)), to the best of our knowledge, there does not exist a unique machine learning 

algorithm that universally outperforms all other algorithms. Moreover, the extant 

literature does not consider the missingness mechanism and implicitly assume MCAR 

or MAR. We go beyond the choice of machine learning algorithms for missing value 

imputation. Instead, we leverage additional information from incomplete records and 

further improve the imputation accuracy of traditional imputation methods using 

different machine learning algorithms. The traditional imputation method can be 

viewed as a special case of our semi-supervised imputation approach, but if the 

underlying missingness mechanism is NMAR, then our approach is better positioned 

to build a more accurate imputation model.  

Our Monte Carlo based approach for handling missing values makes 

significant contribution to enhance the scientific validity of empirical studies. The 
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proposed estimation process archives robustness to NMAR, the most general 

missingness mechanism, by jointly modeling the distribution of the incomplete 

variable and the missingness mechanism.  This estimation process generates 

approximately unbiased estimation under both MAR and NMAR mechanisms. 

Generating unbiased parameter is necessary and critical for both economic 

interpretation and statistical inference.  The magnitude of coefficients (i.e., the 

economic significance) often have profound practical implication in empirical studies. 

Without incorporating the missingness mechanism or simply dropping the incomplete 

observations, bias could be severe.  

This study contributes to the information systems literature on data quality 

and the capability of big data analytics. Starting from the early accounting and 

financial-driven databases to big data analytics nowadays, missing value has always 

been one of the data quality challenges that add complexity to the effective use of 

information systems (Ballou et al. 2003; Cappiello et al. 2003; Grover et al. 2018). 

We answer the call for enhancing the data quality of information systems by 

developing a semi-supervised missing value imputation approach.  

Moreover, the problem of missing data is also critically important to the IS 

discipline as IS researchers are at the forefront in terms of leveraging big data from a 

variety of domains such as e-commerce, healthcare, among others, where IS 

researchers have been able to draw high-impact insights (Chen et al. 2012; Chiang et 

al. 2018). We contribute to research practice by proposing and demonstrating the 

superior performance of a Monte Carlo likelihood approach in correcting bias in 

parameter estimation. Our simulation study suggests that research validity can be 

enhanced through reasoned adoption of missing value handling method and missing 

value reporting practice.  

Overall, the implication of our research on understanding the missing value 

mechanism will motivate more rigorous data collecting and analyzing process to 
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reduce the occurrence of missing values, or to obtain more information on the 

mechanisms of missing values when missing values is often inevitable. Although our 

research makes important contributions in multiple aspects, the limitations of this 

study must be acknowledged. 

Although we demonstrate that, compared to traditional methods, the proposed 

method increases the objective likelihood function incorporating the missingness 

mechanism, the theoretical analysis is conducted when the benchmark imputation 

method is parametric. The theoretical property is not guaranteed under a 

nonparametric situation for our semi-parametric imputation approach. Extending the 

theoretical properties to nonparametric situations could be a promising direction for 

future work. In practical applications, we recommend using the proposed method to 

augment benchmark imputation methods, such as linear SVM, neural network, 

random forest, and gradient boosting to achieve relatively robust results, as 

demonstrated in the simulations and real-world experimentations.  

In addition, we acknowledge the limitations of the simulation analysis where 

we did not exhaustively explore all possible settings. For instance, in demonstrating 

the bias correction in regression analysis, simulation settings would further involve 

varying the correlations among the variables of interest, the magnitude of the beta 

coefficients of the regression model, and the explanatory power (e.g., R2) of the 

regression model, etc. Although the simulation setting would determine the 

magnitude of the bias, we expect that the results will be qualitatively similar given the 

theoretical properties of the missing values problem. 
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CHAPTER 3  TRANSFER LEARNING IN DYNAMIC BUSINESS 

ENVIRONMENTS: TRADE-OFFS IN RESPONSE TO CHANGES 

3.1 Introduction  

Advanced business analytics such as machine learning have been successfully applied 

in a variety of business applications such as in predicting defaults in consumer credit 

loans (Khandani et al. 2010), recommending products based on review ratings (Chen 

et al. 2012), among many others. However, applying machine learning in a real-world 

business context brings about many challenges. One of the challenges arises from 

dynamically changing data environments (Grover et al. 2018; Saboo et al. 2016; Yang 

and Wu 2006). In practice, empirical evidence shows that forecasting in dynamic 

business environments is difficult even for experts (Makridakis et al. 2009). 

Traditional supervised machine learning methods use historical data as a training set 

to construct a prediction model, and then applies the built model to current (test) data 

to make predictions of future events or of variables of interest. One important 

assumption is that the historical training data and current test data exhibit the same 

underlying pattern (Pan and Yang 2010). In dynamic data environments, this 

assumption may not always hold. For instance, in predicting firms’ future earnings 

during recession periods, the distribution of predictors and the functional relationship 

between predictors and the dependent variable may change.  

A simple solution to applying machine learning in such dynamic data 

environments is to re-train the machine learning model using re-collected current 

data. However, current data is often scarce, thus it could be beneficial to also leverage 

some aspects of the historical data in addition to the current data.  This is essentially a 

transfer learning perspective. Transfer learning is defined as extracting knowledge 

from a source data set and applying this knowledge to a target task (Pan and Yang 

2010). In this study, we examine the question whether and how we can make use of 

all of the source data (including same-distribution recent source data and the 
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remaining diff-distribution past source data)26 to achieve better prediction accuracy 

for a target task when there is only a small amount of source data that exhibit the 

target data pattern.  

In particular, we identify and investigate two important trade-offs faced by 

data analysts in dynamic data environments. First, the same-distribution source data is 

often scarce. Thus, the first trade-off is between two alternative strategies – 1) re-

training a model using a small but more relevant same-distribution source data set or 

2) using transfer learning (i.e., training a model using large but potentially less 

relevant data sets consisting of both same-distribution and diff-distribution source 

data). Moreover, since the fundamental challenge of adapting to the change originates 

from the scarcity of the same-distribution source data, data analysts can naturally 

consider waiting for a time period and to collect and incorporate more same-

distribution source data to train a more accurate model for the target task, but at the 

cost of deteriorating prediction performance before the adjustment is made. 

Therefore, the second trade-off faced by data analysts is with the time dimension – 

whether to make the adjustment 1) immediately or 2) at a later time point when more 

same-distribution source data has become available. 

Extant research has long been focused on detecting changes and making 

adjustments to the prediction model in changing data environments. Several 

algorithms have been proposed for monitoring errors of machine learning models, 

such as the drift detection method (DDM; Gama et al. 2004), adaptive windowing 

algorithm (ADWIN; Bifet and Gavalda 2007), among others. However, even if a 

change in data is detected, challenges regarding how to adapt to the changes given 

scarce same-distribution data still persist.  

 
26 The source data records used to train a machine learning model can be divided to two parts, 
same-distribution data and diff-distribution data. The same-distribution data exhibit the target 
data pattern while the diff-distribution data exhibit different pattern to the target data. In 
dynamic data environments, we can specify the same-distribution data as the records that are 
collected in the current data regime. 
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To overcome the problem of scarcity of same-distribution data, transfer 

learning generally employs a weighting scheme to jointly use the same-distribution 

and the diff-distribution source data sets. Intuitively, the same-distribution source data 

records are assigned higher weights while the diff-distribution source data records are 

assigned lower weights (Dai et al. 2007). There also exist a theoretically motivated 

instance weighting approach based on variables’ distributions (Zadrozny 2004). 

However, these studies often focus on the situation where the distribution of 

predictors changes across the source data and target data while the relationship 

between predictors and the variable to be predicted is fixed, a situation known as 

transductive transfer learning or as the covariate drift problem (Huang et al. 2007; 

Zadrozny 2004). To the best of our knowledge, there exists little research on 

inductive transfer learning settings where both the distribution of predictors and the 

functional relationship between predictors and the dependent variable change across 

the source and target data. 

Moreover, although different algorithms have demonstrated successful 

implementation in changing data environments (Ganin et al. 2016; Pan et al. 2008), 

we still do not have a clear understanding or explanation on when and to what extent 

transfer learning works. This is due to confounding factors in empirical data 

experimentations and the variety of design mechanisms for transfer learning 

algorithms. In this study, we aim to gain theoretical insights on transfer learning by 

proposing a transfer learning framework from the sample selection perspective and 

investigate the trade-offs of whether and how to conduct transfer learning through a 

systematic Monte Carlo study. 

In our proposed framework of transfer learning, the change in the data pattern 

is represented by a sample selection model. The sample selection model generates the 

probability that a data point represents the different data pattern to the target data 

given its values of predictors and the value to be predicted. Assuming a model that 
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fits both the source data and target data exists, sample selection would result in 

different model estimations if the model is fitted using source data and target data 

separately. To adjust the prediction model trained on the source data to let it fit the 

target data, we derive a weighting approach based on the sample selection probability. 

The proposed method is theoretically driven by the empirical risk minimization 

(ERM) for the target data distribution, which is also reflected in the instance 

weighting approach by Zadrozny (2004) and Kim and Yu (2011). 

We further analyze transfer learning effectiveness under the proposed 

framework. Based on our conceptual analysis, it is expected that the number of 

predictors being used, and the extent of underlying changes will have an effect on the 

effectiveness of transfer learning. To clearly depict the overall trade-offs, we design a 

simulation study to examine the effectiveness of transfer learning in changing data 

environments. Results are consistent with our expectations. In general, transfer 

learning outperforms retraining using only the same-distribution data when the same-

distribution data is scarce. In addition, the benefits of transfer learning are more 

prominent under a larger number of predictors and when the extent of change is 

smaller. Regarding when the model should be adapted, our simulation results show 

that retraining using the same-distribution data greatly benefit from adjusting the 

model at a later time point until more same-distribution data can be incorporated. 

When the number of same-distribution data is large enough, transfer learning that 

leverages the diff-distribution data tends to be less accurate than retraining a model 

using same-distribution data. 

Our study provides important theoretical and managerial insights from 

multiple aspects. First, this study investigates two important trade-offs in response to 

changes in data patterns and sheds light onto the understanding of the bias-variance 

and exploration-exploitation trade-offs, respectively (Shmueli and Koppius 2011). 

Regarding the first trade-off between applying a transfer learning strategy vs. re-
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training the prediction model using only the same-distribution source data, our 

simulation results show that using historical source data with uniform weight 

introduces bias in model prediction although at the same time reduces the variance of 

prediction error. However, the inherent bias-variance trade-off can be alleviated by 

strategically leveraging the source data, i.e., applying transfer learning based on 

sample selection probability which corrects the model trained using source data 

towards the target data pattern. When the same-distribution source data is sparse, both 

theoretical analysis and simulation results point to the advantage of transfer learning 

based on sample selection probability. The exploration-exploitation trade-off is 

reflected in the timing of adjusting the prediction model. The tension of this trade-off 

differs among the two alternative strategies. The advantage of exploration of 

additional data samples significantly outweighs exploitation of sparse same-

distribution source data in the re-training strategy, whereas this trade-off is not 

apparent for the transfer learning strategy. Built upon our theoretical analysis on the 

effectiveness of transfer learning, data analysts can incorporate their prior knowledge 

or conduct customized simulation analysis in deciding whether or not to use transfer 

learning and when to adjust the prediction model. 

Second, our study provides practical managerial implications for predictive 

analytics in changing data environments. In predictive modeling, a large historical 

training data set is often viewed as beneficial to improve the reliability of prediction 

models and also allows data analysts to develop complex models to closely 

approximate reality. However, the inherent uncertainty and dynamism in the business 

environment prompt us to reconsider the information value of historical data records 

and the effectiveness of transfer learning in utilizing them. Although transfer learning 

would effectively improve prediction performance compared to re-training a new 

prediction model, as the number of same-distribution data grows, evidence from our 

simulations shows that simply re-training the model using same distribution data 
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could actually be superior. Therefore, the choice of the optimal strategic response to 

data pattern change depends on the feasibility of actively collecting additional data. In 

some domains, delaying action until additional data examples are available may result 

in substantial loss. In such situations, an immediate response to the change needs to 

be made which favors the transfer learning strategy.  

Third, we contribute to the transfer learning literature by developing a 

theoretical framework from a sample selection perspective. Built upon empirical risk 

minimization, we further derive a probabilistic weighting scheme which minimizes 

bias caused by source data. Based on the proposed framework, we decompose the 

approximation error of transfer learning, which guides further insights into the 

effectiveness of transfer learning. Compared to extant transfer learning methods 

which often rely on pre-specified commonalities among different data patterns, our 

perspective focuses on modeling the sample selection process that distinguishes 

different data sets, and then correcting prediction models towards the target data 

patterns by adjusting the weights of source data samples. Our method minimizes 

heuristic pre-specifications thus potentially enhances the robustness of transfer 

learning in data environments without much unexpected uncertainty. 

3.2 Related Works 

Learning in dynamic environments is an important topic. In this section, we will 

review related research streams on change detection and transfer learning that 

contribute to this challenge. Detecting change is an important part of enhancing 

learning quality in dynamic environments. Transfer learning provides a direction to 

adjust the prediction model when the data pattern changes. By synthesizing the 

related research streams, we discuss the research gaps and motivate our research 

method.  
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3.2.1 Change Detection 

Detecting changes in a data stream is an important area of research with many 

applications. A common approach to change detection is to monitor the error rate of 

the current prediction model, which, under a stable data pattern, should remain 

stabilized. The prediction model that maps the predictors to the variable to be 

predicted does not need to change if the underlying relationship is stable. When the 

error rate increases significantly, change is declared, and it is invoked that the 

prediction model should be revised or rebuilt with new data.  

Existent approaches have been successfully implemented to detect changes in 

the data pattern based on error streams. These approaches generally compare two sub-

sets of a data sequence; if the difference is sufficiently significant (i.e., surpasses a 

certain threshold), change is declared (Harel et al. 2014). This threshold is often based 

on a heuristic statistical model. For example, the drift detection method (DDM) by 

Gama et al. (2004), monitors the error rate 𝑝𝑝𝑖𝑖 and the standard deviation 𝑠𝑠𝑖𝑖 at instance 

i and registers two values 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. Every time a new instance i is processed, 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 are updated when 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖 is lower than 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. The condition for 

detecting change is 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖 ≥ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼 × 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 with 𝛼𝛼 = 3 as recommended by the 

authors. Another popular algorithm is the adaptive windowing algorithm (ADWIN) 

by Bifet and Gavalda (2007). It exclusively compares two sub-windows of a data 

sequence; whenever the averages of two sub-windows are different (i.e., exceed a 

certain threshold 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐), it concludes that the expected values are different across the 

two sub-windows. The calculation of the threshold is as follows, which in general 

involves a user-input 𝛿𝛿 parameter as an upper bound of the false positive rate. 

𝑚𝑚 = 1
1 𝑛𝑛0⁄ +1 𝑛𝑛1⁄ ,  𝛿𝛿′ = 𝛿𝛿

𝑛𝑛
, 𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐 = � 1

2𝑚𝑚
∙ ln � 4

 𝛿𝛿′
� . 

where 𝑛𝑛0 and 𝑛𝑛1 are lengths of the two sub-windows and 𝑛𝑛 is the length of the whole 

window (𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛1).  
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However, even if data change can be effectively detected, the challenge in 

adapting the prediction model persists due to the scarcity of new data. Unlike change 

detection, which is based on the prediction errors of instances, adjusting the 

prediction model typically involves numerous predictors along with the variable to be 

predicted. Hence, a large sample is generally required to retrain a reliable model.   

3.2.2 Transfer Learning  

Transfer learning is defined as extracting knowledge from a source data set and 

applying this knowledge to a target task. Using source data may be beneficial in 

improving prediction performance when new data or target data is scarce. In this 

section, we introduce concepts and developments in transfer learning. The changes in 

data pattern across source data and target data may involve both the distribution of 

predictors x, namely Pr(x), as well as the relationship between x and the variable y to 

be predicted, represented with a probabilistic conditional distribution Pr(y│x; θ). The 

former is within the domain space and the latter is within the task space. Depending 

on how the source data and target data are different from one another, the two broad 

categories of transfer learning are transductive transfer learning and inductive transfer 

learning, as summarized in Table 3-1, where the superscript S (T) indicates that the 

variable or parameter is from source (target) data. 

  Task space: Pr(y│x; θ) 

  Pr𝑇𝑇(𝑦𝑦|𝒙𝒙;𝜽𝜽)
= Pr𝑆𝑆(𝑦𝑦|𝒙𝒙;𝜽𝜽) 

Pr𝑇𝑇(𝑦𝑦|𝒙𝒙;𝜽𝜽)
≠ Pr𝑆𝑆(𝑦𝑦|𝒙𝒙;𝜽𝜽) 

Do
m

ain
 sp

ac
e: 

Pr
(x

) 

Pr𝑇𝑇(𝒙𝒙) =
Pr𝑆𝑆(𝒙𝒙)  

Traditional Machine 
Learning Inductive Transfer 

Learning Pr𝑇𝑇(𝒙𝒙) ≠
Pr𝑆𝑆(𝒙𝒙)  

Transductive Transfer 
Learning 

Table 3-1 Categories of Transfer Learning in Supervised Machine Learning 
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Transductive Transfer Learning  

The transductive transfer learning setting is the situation where (1) the conditional 

probability Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽) is fixed while the change of data environments is represented 

by the different distribution of 𝒙𝒙 across the source and target data; and (2) the 𝒙𝒙 of the 

target data set needs to be observed when the machine learning model is being 

constructed so that the information about the change of Pr(𝒙𝒙) can be obtained. Within 

machine learning topics, this sub-problem is also known as covariate shift (Sugiyama 

et al. 2008) since predictors x are also named covariates.  

With structured data, transductive transfer learning methods are dominated by 

instance-transfer through importance weighting. To illustrate the idea of importance 

weighting, we introduce the notations for source data set and target data set. Let 𝑫𝑫𝑺𝑺 =

��𝒙𝒙1𝑆𝑆 ,𝑦𝑦1𝑆𝑆�, �𝒙𝒙2𝑆𝑆 ,𝑦𝑦2𝑆𝑆�, … , (𝒙𝒙𝑚𝑚𝑆𝑆 ,𝑦𝑦𝑚𝑚𝑆𝑆 )� be the source data set, and the target data set is 

denoted with 𝑫𝑫𝑻𝑻 = {𝒙𝒙1𝑇𝑇 ,  𝒙𝒙2𝑇𝑇 , … ,𝒙𝒙𝑛𝑛𝑇𝑇} where the corresponding 𝑦𝑦1𝑇𝑇 ,𝑦𝑦2𝑇𝑇 , … ,𝑦𝑦𝑛𝑛𝑇𝑇 are 

unknown and to be predicted. The sample size of source data and target data is m and 

n, respectively.  

The estimated parameter 𝜽𝜽∗ in Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽) should minimize the expected risk,  

 𝜽𝜽∗ = arg𝜽𝜽min𝐄𝐄(𝒙𝒙,𝑦𝑦)~Pr(𝒙𝒙,𝑦𝑦)[𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)], (3.1) 

where 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) is a loss function. For instance, the loss function can be the negative 

log-likelihood −ln�Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽)� from a maximum likelihood estimation perspective. 

The expected loss is calculated over the distribution of (𝒙𝒙,𝑦𝑦), denoted with Pr(𝒙𝒙,𝑦𝑦). 

However, since we only observe source data examples 𝑫𝑫𝑺𝑺 = ��𝒙𝒙1𝑆𝑆 ,𝑦𝑦1𝑆𝑆�, �𝒙𝒙2𝑆𝑆 ,𝑦𝑦2𝑆𝑆�,

… , (𝒙𝒙𝑚𝑚𝑆𝑆 ,𝑦𝑦𝑚𝑚𝑆𝑆 )� drawn from Pr(𝒙𝒙,𝑦𝑦), we have to resort to estimating parameter 𝜽𝜽∗ 

through empirical risk minimization (ERM; Vapnik 1995), namely,  

 𝜽𝜽∗ = arg𝜽𝜽min 1
𝑚𝑚
∑ [𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)](𝒙𝒙,𝑦𝑦)∈𝑫𝑫𝑺𝑺 . (3.2) 
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In general transfer learning settings (inductive or transductive), since the 

distribution of (𝒙𝒙,𝑦𝑦)  is different across target and source data sets, we have 

Pr𝑇𝑇(𝒙𝒙,𝑦𝑦) ≠ Pr𝑆𝑆(𝒙𝒙,𝑦𝑦). In this case, we want to learn an optimal model for the target 

data set by minimizing the following expected risk: 

 𝜽𝜽∗ = arg𝜽𝜽min𝐄𝐄(𝒙𝒙,𝑦𝑦)~Pr𝑇𝑇(𝒙𝒙,𝑦𝑦)[𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)], (3.3) 

which can be transformed to 𝜽𝜽∗ = arg𝜽𝜽min𝐄𝐄(𝒙𝒙,𝑦𝑦)~Pr𝑆𝑆(𝒙𝒙,𝑦𝑦) �
Pr𝑇𝑇(𝒙𝒙,𝑦𝑦)
Pr𝑆𝑆(𝒙𝒙,𝑦𝑦) 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)�.  

Therefore, the ERM to estimate 𝜽𝜽∗ in the general transfer learning setting is:  

 𝜽𝜽∗ = arg𝜽𝜽min 1
𝑚𝑚
∑ �Pr

𝑇𝑇(𝒙𝒙,𝑦𝑦)
Pr𝑆𝑆(𝒙𝒙,𝑦𝑦) 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)�(𝒙𝒙,𝑦𝑦)∈𝑫𝑫𝑺𝑺 , (3.4) 

Intuitively, Equation (3.4) indicates that, when Pr𝑇𝑇(𝒙𝒙,𝑦𝑦) ≠ Pr𝑆𝑆(𝒙𝒙,𝑦𝑦), we need to 

assign weight Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆� Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆��  to the source data record �𝒙𝒙𝑖𝑖𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆�, i=1,…, m.  

In the transductive transfer learning setting, Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽) is assumed to be fixed 

across the source and target data sets, thus we have Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆,𝑦𝑦𝑖𝑖𝑆𝑆� Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆,𝑦𝑦𝑖𝑖𝑆𝑆�� =

Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆� Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆�� . Estimating Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆� and Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆� only for the purpose of 

calculating Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆� Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆��  may lead to much unnecessary computational 

workload. For instance, given that the number of predictors is usually large, it would 

be expensive and even infeasible to estimate the joint distribution of all predictors 

(Sugiyama et al. 2008). Zadrozny (2004) propose a weighting scheme based on a 

sample selection model without estimating Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆� or Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆�. The sample 

selection model describes the probability that a data record is “selected” to be a 

source data record (rather than a target data record). In their selection model, this 

probability is assumed to only depend on predictors 𝒙𝒙 but not 𝑦𝑦. This sample 

selection idea is related to our proposed method. However, our method aims at 

solving the problem of inductive transfer learning as introduced below. 
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Inductive Transfer Learning  

Inductive transfer learning is a more general learning setting and aims to investigate 

not only the possible change in 𝒙𝒙, but also the change in the conditional probability 

Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽). However, if Pr𝑇𝑇(𝑦𝑦|𝒙𝒙;𝜽𝜽) is arbitrarily different to Pr𝑆𝑆(𝑦𝑦|𝒙𝒙;𝜽𝜽), there is no 

way we could infer a good estimator based on the source data. More specifically, in 

the above importance weighting scheme, we cannot even theoretically estimate the 

weight Pr𝑇𝑇�𝒙𝒙𝑖𝑖𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆� Pr𝑆𝑆�𝒙𝒙𝑖𝑖𝑆𝑆,𝑦𝑦𝑖𝑖𝑆𝑆��  if Pr𝑇𝑇(𝑦𝑦|𝒙𝒙;𝜽𝜽) is completely unknown in the target 

data. Therefore, some prior information is required to infer the change of Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽). 

One type of prior information is the prior distribution of parameters. Methods 

employing this type of information are viewed as parameter-transfer methods since it 

is the parameters (prior of parameters) that are transferred across source and target 

data sets. For instance, Lawrence and Platt (2004) and Kumagai and Iwata (2018) 

assume that the 𝜽𝜽 of Pr(𝑦𝑦|𝒙𝒙;𝜽𝜽) follows a Gaussian process. Saboo et al. (2016) 

employ a time-varying effect analysis to model the regression coefficients as a 

smooth function of time.  

Another type of prior information is the specification of some “good” source 

data that exhibit the same data pattern as the target data (called same-distribution 

source data). Methods employing this type of information are instance-transfer 

methods and like transductive learning, adjust the training of the machine learning 

model by importance weighting. The same-distribution source data can be specified 

by human experts based on their domain knowledge. As illustrated in Figure 3-1 

below, in changing data environments, it is natural to identify data records that are 

collected in the current data regime as the same-distribution source data since they 

reflect the most up-to-date data pattern. The historical data records collected during 

the previous data regime are diff-distribution source data. In the simulation analysis 
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of Section 3.4, we detailed the specification of same-distribution and diff-distribution 

source data in the context of change detection in dynamic data environments. 

 

Figure 3-1 Illustration of Same-Distribution and Diff-Distribution Source 
Data in Changing Data Environments 

Compared to parameter-transfer, instance-transfer does not require a GP-type 

view of the dynamic environment, but rather represents a data-driven approach which 

adjusts the training of the machine learning algorithm in a desirable direction implied 

by the same-distribution source data records. Moreover, parameter-transfer assumes 

pattern change of the whole data generating process over a long-time horizon while 

instance-transfer involves short memory and is triggered by the changes across source 

and target data. In the context of business cycle dynamics, policy changes and 

structural breaks, the short memory view may be more realistic and easily understood 

(Chen and Niu 2014). 

However, in spite of this salient advantage, existing solutions on instance-

transfer for inductive learning are rare and have non-trivial limitations. To exploit the 

same-distribution source data, an important approach in the literature is to assign 

higher weights to the same-distribution source data and lower weights to the 

remaining source data. However, quantifying an appropriate weighting scheme is a 

non-trivial issue. Jiang and Zhai (2007) discuss an approach in which human experts 

learn from the same-distribution source data to identify and delete the “misleading” 

source data records. However, this approach would require intensive human 

intervention thus could be practically infeasible. Dai et al. (2007) develop a 

TrAdaBoost classifier to exploit the same-distribution source data. TrAdaBoost 

adjusts the iterative process of the original AdaBoost, by increasing the weights of 
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same-distribution source data and decreasing the weights of the remaining diff-

distribution source data (called diff-distribution source data). Although the weighting 

scheme of TrAdaBoost is intuitively appropriate, however, as pointed out by the 

authors, TrAdaBoost does not guarantee to always improve AdaBoost, since the 

quality of diff-distribution source data is uncertain. 

In summary, the extant transfer learning literature has primarily been method 

oriented and less focused on the question of when and to what extent transfer learning 

works well in the broader context of changing data environments. Theoretical 

guidance in conducting inductive transfer learning is also in dire need.  

3.3 Developing a Transfer Learning Framework for Dynamic Data 

Environments  

To account for changing data patterns, transfer learning typically requires 

strategically weighting the diff-distribution source data. In this section, we first 

formalize the transfer learning problem as a sample selection setting and propose a 

probabilistic weighting method. Then, we explore factors that would influence the 

effectiveness of transfer learning compared to only using the same-distribution source 

data.  

3.3.1 Transfer Learning from a Sample Selection Perspective 

Transfer learning can be conceptualized as sample selection bias (Heckman 1979). 

Transductive transfer learning (a.k.a. covariate shift) has been explored empirically 

from a sample selection perspective (e.g., Bickel et al. 2007; Zadrozny 2004). Here, 

we develop a more general framework for the transfer learning setting where the 

change across data pattern may involve both predictors and the functional relationship 

between predictors and the variable to be predicted. 

From the perspective of sample selection, an underlying sample selection 

model can be used to represent the probability that a data point represents a different 
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data pattern from the target data given its values of predictors and the value to be 

predicted. The probability is realized in a way that we observed some data points in 

the source data set and other data points in the target data set. The sample selection 

model is widely used in improving causality identification (Heckman 1979). 

Although data analytics for prediction do not aim at establishing causality (Shmueli 

and Koppius 2011), the sample selection perspective has been preliminarily adopted 

in transductive transfer learning studies (e.g., Zadrozny 2004) and helps to derive a 

more robust model when there is potential heterogeneity in different data sets.  

Let r=1 if the data record follows different distribution to the target data (i.e., 

diff-distribution source data records), and r=0 if the data record follows the same 

distribution to the target data (i.e., same-distribution source data records). The 

proposed model involves approximating Pr(r=1│x, y), the probability that a data point 

exhibits the source data pattern (or equivalently in approximating Pr(r=0│x, y), the 

probability that a data point exhibits the target data pattern).27 It can be shown 

through the following derivation that, if the underlying probability Pr(r=1│x, y) of the 

source data is known, the target data pattern can be estimated through empirical risk 

minimization (ERM) combining same-distribution source data with weighted diff-

distribution source data. More specifically, the challenge is to obtain an estimate for θ 

that minimizes the expected loss in target data, namely 𝐸𝐸(𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 0). It can be 

shown that the weights of diff-distribution source data records can be theoretically 

derived for minimizing the risk of target data. 

Theorem 3.1 Let Pr(𝑟𝑟 = 0|𝒙𝒙,𝑦𝑦) be the probability that the data record (𝒙𝒙,𝑦𝑦) does 

not follow the target data pattern, wherein 𝑟𝑟 = 1 indicates that the data record follows 

a data pattern different from the target data; and 𝑟𝑟 = 0 if the data record follows the 

 
27 When the selection process does not depend on y, namely Pr(r=1│x, y) = Pr(r=1│x), it is a 
typical scenario of exogenous selection which generally does not result in a change in the 
relationship between x and y in regression analysis. This exogenous selection process is 
investigated in transductive transfer learning setting (Zadrozny, 2004). 
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target data pattern. Then we have  

 𝐸𝐸(𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 0) = 𝐸𝐸(𝑤𝑤(𝒙𝒙,𝑦𝑦)𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)| 𝑟𝑟 = 1), (3.5) 

wherein w(x, y) is defined as the following: 

 𝑤𝑤(𝒙𝒙,𝑦𝑦) = Pr(𝑟𝑟=0|𝒙𝒙,𝑦𝑦)
Pr(𝑟𝑟=1|𝒙𝒙,𝑦𝑦)

Pr(𝑟𝑟=1)
Pr(𝑟𝑟=0), (3.6) 

w(x, y) indicates the odds that the data record exhibiting the target data pattern given 

the value (x, y) multiplying a constant 𝑐𝑐 = Pr(𝑟𝑟=1)
Pr(𝑟𝑟=0) which is the overall odds of 

observing diff-distribution data.   

Proof sketch: 

𝐸𝐸(𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 0) = ∫ 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)Pr(𝒙𝒙,𝑦𝑦|𝑟𝑟 = 0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (i) 

 = ∫ 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=0)
Pr(𝑟𝑟=0) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (ii) 

  = ∫ 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)
Pr(𝑟𝑟=1)

Pr(𝑟𝑟=1)
Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)

Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=0)
Pr(𝑟𝑟=0) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (iii) 

  = ∫ 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=0)
Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)

Pr(𝑟𝑟=1)
Pr(𝑟𝑟=0)

Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)
Pr(𝑟𝑟=1) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (iv) 

  = ∫ 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=0)
Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)

Pr(𝑟𝑟=1)
Pr(𝑟𝑟=0) Pr(𝒙𝒙,𝑦𝑦|𝑟𝑟 = 1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (v) 

  = ∫𝑤𝑤(𝒙𝒙,𝑦𝑦)𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)Pr(𝒙𝒙,𝑦𝑦|𝑟𝑟 = 1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (vi) 

  = 𝐸𝐸(𝑤𝑤(𝒙𝒙,𝑦𝑦)𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 1)  (vii) 

wherein the equality (ii) above is because the conditional probability Pr(𝒙𝒙,𝑦𝑦|𝑟𝑟) =

𝑃𝑃𝑃𝑃(𝒙𝒙,𝑦𝑦, 𝑟𝑟) 𝑃𝑃𝑃𝑃(𝑟𝑟)⁄ , and the equality (iii) above is obtained by multiplying 1 =

 𝑃𝑃𝑃𝑃(𝒙𝒙,𝑦𝑦, 𝑟𝑟 = 1)/𝑃𝑃𝑃𝑃(𝑟𝑟 = 1)  ×  𝑃𝑃𝑃𝑃(𝑟𝑟 = 1)/𝑃𝑃𝑃𝑃(𝒙𝒙,𝑦𝑦, 𝑟𝑟 = 1). The weight 𝑤𝑤(𝒙𝒙,𝑦𝑦) =

Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=0)
Pr(𝒙𝒙,𝑦𝑦,𝑟𝑟=1)

𝑃𝑃𝑃𝑃(𝑟𝑟=1)
𝑃𝑃𝑃𝑃(𝑟𝑟=0) = Pr(𝑟𝑟=0|𝒙𝒙,𝑦𝑦)

Pr(𝑟𝑟=1|𝒙𝒙,𝑦𝑦)
Pr(𝑟𝑟=1)
Pr(𝑟𝑟=0).  

Q.E.D. 

Equation (3.5) suggests that, to estimate 𝜽𝜽 in 𝐸𝐸(𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 0), we can 

alternatively minimize the expected loss 𝐸𝐸(𝑤𝑤(𝒙𝒙,𝑦𝑦)𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽)|𝑟𝑟 = 1). This line of 

probabilistic weighting approach is also employed for handling non-ignorable 

missing values (Kim and Yu 2011). The left-hand side expectation in Equation (3.5) 

can be approximated by averaging the loss of data points that follow the target data 
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pattern (conditional on r=0), while the right-hand side expectation can be 

approximated by averaging the weighted loss of data points following different data 

pattern to target data (conditional on r=1). Since same-distribution source data is 

often scarce, it would be beneficial if we can leverage a relatively large number of 

diff-distribution source data and minimize the empirical loss for the right-hand side 

expectation. Table 3-2 presents the algorithm of the proposed transfer learning 

method based on sample selection. 

Algorithm 3.1: Transfer learning based on sample selection 
 Data:  

Source data set 𝑫𝑫𝑺𝑺 = ��𝒙𝒙1𝑆𝑆,𝑦𝑦1𝑆𝑆�, �𝒙𝒙2𝑆𝑆 ,𝑦𝑦2𝑆𝑆�, … , (𝒙𝒙𝑚𝑚𝑆𝑆 ,𝑦𝑦𝑚𝑚𝑆𝑆 )�. 𝑫𝑫𝑺𝑺 is splitted to 
two components of size 𝑝𝑝 and 𝑞𝑞, 𝑚𝑚 = 𝑝𝑝 + 𝑞𝑞, respectively:  

// Diff-distribution source data: 𝑫𝑫𝑺𝑺−𝑫𝑫 = ��𝒙𝒙1𝑆𝑆−𝐷𝐷 ,𝑦𝑦1𝑆𝑆−𝐷𝐷�, … ,
�𝒙𝒙𝑝𝑝𝑆𝑆−𝐷𝐷,𝑦𝑦𝑝𝑝𝑆𝑆−𝐷𝐷��  
// Same-distribution source data: 𝑫𝑫𝑺𝑺−𝑺𝑺 = ��𝒙𝒙1𝑆𝑆−𝑆𝑆 ,𝑦𝑦1𝑆𝑆−𝑆𝑆�, … ,
�𝒙𝒙𝑞𝑞𝑆𝑆−𝑆𝑆 ,𝑦𝑦𝑞𝑞𝑆𝑆−𝑆𝑆�� 

𝒓𝒓, selection indicator vector of length 𝑚𝑚 
// 𝑟𝑟𝑖𝑖 = 1 if the 𝑖𝑖-th source data record is a diff-distribution source record, 
𝑟𝑟𝑖𝑖 = 0 otherwise, 𝑖𝑖 = 1, 2, … ,𝑚𝑚. 

Target data set 𝑫𝑫𝑻𝑻 = {𝒙𝒙1𝑇𝑇 ,  𝒙𝒙2𝑇𝑇 ,  … ,  𝒙𝒙𝑛𝑛𝑇𝑇}. 
 Input: 

𝜔𝜔, a list of weights for source data records  
PreMdl, user specified prediction model of the relationship between 𝑦𝑦 and 𝒙𝒙 
SelMdl, user specified classification model to classify the same-distribution and 
the diff-distribution source data sets 

 Output:  
𝒚𝒚𝑇𝑇, prediction outcome for target data records 

1 train classification model SelMdl to classify same-distribution and diff-
distribution source data; 

2 for each 𝑖𝑖 in {1, 2, … , 𝑝𝑝}  
3 calculate the weight of the diff-distribution source data record 

�𝒙𝒙𝑖𝑖𝑆𝑆−𝐷𝐷,𝑦𝑦𝑖𝑖𝑆𝑆−𝐷𝐷� using Equation (3.6), and store the corresponding weight to 
the list 𝜔𝜔; 

4 end for 
5 for each 𝑖𝑖 in {1, 2, … , 𝑞𝑞}  
6 assign weight one to the same-distribution source data record 

�𝒙𝒙𝑖𝑖𝑆𝑆−𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆−𝑆𝑆�, and store the corresponding weight to the list 𝜔𝜔; 
7 end for 
8 train prediction model PreMdl using the same-distribution and diff-

distribution source data with weights in 𝜔𝜔; 
9 apply PreMdl to the target data 𝑫𝑫𝑻𝑻 and generate prediction 𝒚𝒚𝑇𝑇; 
10 return 𝒚𝒚𝑇𝑇 

Table 3-2 Algorithm of Transfer Learning Based on Sample Selection 
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In practice, after splitting the overall source data to diff-distribution and 

same-distribution components, with the sample size being p and q, respectively, the 

empirical loss for estimating θ consists of two terms: 

 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1
𝑝𝑝+𝑞𝑞

�∑ �𝑤𝑤�𝒙𝒙𝑖𝑖𝑆𝑆−𝐷𝐷,𝑦𝑦𝑖𝑖𝑆𝑆−𝐷𝐷�𝑙𝑙�𝒙𝒙𝑖𝑖𝑆𝑆−𝐷𝐷 ,𝑦𝑦𝑖𝑖𝑆𝑆−𝐷𝐷;𝜽𝜽��𝑝𝑝
𝑖𝑖=1  +

∑ �𝑙𝑙�𝒙𝒙𝑖𝑖𝑆𝑆−𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆−𝑆𝑆;𝜽𝜽��𝑞𝑞
𝑖𝑖=1 �, (3.7) 

where the first term corresponds to the empirical weighted loss of diff-distribution 

source data and the second term corresponds to the empirical loss of same-

distribution source data. Up to now, we assumed that the selection probability 

Pr(𝑟𝑟 = 1|𝒙𝒙,𝑦𝑦) is known. In practice, we would have to estimate it from the data. 

Using the diff-distribution source data labelled with r=1 and same-distribution source 

data labelled with r=0, we can train a classifier that generates the 0/1 label and the 

estimated probability Pr�(𝑟𝑟 = 1|𝒙𝒙,𝑦𝑦).  

3.3.2 The Effectiveness of Transfer Learning  

In the transductive transfer learning paradigm (which models the change in the 

distribution of predictors x), theoretical analysis of error bounds shows that the 

distribution divergence of predictors’ distribution between same-distribution and diff-

distribution source data and the complexity of function classes measured with 

Vapnik–Chervonenkis (VC) dimension are important factors determining whether we 

should use the diff-distribution source data (Ben-David et al. 2010). However, the 

understanding of the inductive transfer learning paradigm (where the relationship 

between x and y changes) is still in a vacuum. In this section, we discuss two factors 

that would potentially influence the effectiveness of transfer learning – 1) the number 

of predictors used in the prediction model and 2) extent of change across the source 

and the target data sets. 
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To proceed with our analysis, we leverage the Hoeffding’s inequality, a 

commonly used inequality in statistical learning theory. The Hoeffding’s inequality 

gives Lemma 3.1 and 3.2 as follows.  

Lemma 3.1 The empirical average loss of same-distribution source data examples is 

expressed as 1
𝑞𝑞
∑ �𝑙𝑙�𝒙𝒙𝑖𝑖𝑆𝑆−𝑆𝑆 ,𝑦𝑦𝑖𝑖𝑆𝑆−𝑆𝑆;𝜽𝜽��𝑞𝑞
𝑖𝑖=1 , denoted with 𝐿𝐿𝑆𝑆−𝑆𝑆. Let the loss of any data 

example be upper bounded: 𝑙𝑙(𝒙𝒙,𝑦𝑦;𝜽𝜽) ≤ 𝑏𝑏. By Hoeffding’s inequality, we have, for 

any 𝛿𝛿 > 0: 

Pr�|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑏𝑏
√𝑞𝑞
�1
2

ln �2
𝛿𝛿
�� ≤ 𝛿𝛿, 

wherein b is the upper bound of the loss of data examples, q is the sample size of 

same-distribution source data. 

Lemma 3.2 The empirical average weighted loss of diff-distribution source data 

examples is expressed as 1
𝑝𝑝
∑ �𝑤𝑤𝑖𝑖𝑙𝑙�𝒙𝒙𝑖𝑖𝐷𝐷−𝑆𝑆 ,𝑦𝑦𝑖𝑖𝐷𝐷−𝑆𝑆;𝜽𝜽��𝑝𝑝
𝑖𝑖=1 , denoted with 𝐿𝐿𝐷𝐷−𝑆𝑆. Let the 

weighted loss of any data example be upper bounded: 𝑤𝑤𝑤𝑤(𝒙𝒙,𝑦𝑦;𝜽𝜽) ≤ 𝑎𝑎. By 

Hoeffding’s inequality, we have, for any 𝛿𝛿 > 0:  

Pr�|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑎𝑎
√𝑝𝑝
�1
2

ln �2
𝛿𝛿
�� ≤ 𝛿𝛿, 

wherein a is the upper bound of the weighted loss of data examples, and p is the 

sample size of diff-distribution source data. 

In Lemma 3.1, we have that, with probability at least 𝛿𝛿, the distance between 

empirical average loss of same-distribution data examples and 𝐸𝐸𝑟𝑟=0 is bounded with 

𝑏𝑏
√𝑞𝑞
�1
2

ln �2
𝛿𝛿
�. Analogously, Lemma 3.2 shows that, with probability at least 𝛿𝛿, the 

distance between empirical average weighted loss of diff-distribution data examples 

and 𝐸𝐸𝑟𝑟=0 is bounded with 𝑎𝑎
√𝑝𝑝
�1
2

ln �2
𝛿𝛿
�. Under the transfer learning strategy, both the 

same-distribution and the diff-distribution data records are used. Based on Lemma 3.1 
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and Lemma 3.2, we obtain probabilistic bound for the distance between 𝐿𝐿𝑇𝑇 and 𝐸𝐸𝑟𝑟=0, 

as presented in Theorem 3.2. 

Theorem 3.2 According to Lemma 3.1 and Lemma 3.2, for any 𝛿𝛿 > 0, we have: 

Pr�|𝐿𝐿𝑇𝑇 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑝𝑝
𝑝𝑝+𝑞𝑞

𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
� + 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
�� ≤ 𝛿𝛿. 

According to Theorem 3.2, with probability at least 1 − 𝛿𝛿, the distance 

between the empirical loss using transfer learning and the expected loss of target data 

is bounded with 𝜁𝜁 ≡ 𝑝𝑝
𝑝𝑝+𝑞𝑞

𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
� + 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
�. Proof of Theorem 3.2 is 

presented in Appendix 2.1. 

The results we obtain so far allow us to analyse the potential benefit of 

transfer learning. In particular, we denote the difference between the two probabilistic 

upper bounds for the distance of transfer learning/non-transfer learning to 𝐸𝐸𝑟𝑟=0 as 

∆𝑑𝑑, namely ∆𝑑𝑑 = 𝑏𝑏
√𝑞𝑞
�1
2

ln �2
𝛿𝛿
� − � 𝑝𝑝

𝑝𝑝+𝑞𝑞
𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
� + 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
��. By 

rearranging the terms, we have: 

∆𝑑𝑑 = 𝑏𝑏
√𝑞𝑞
� 𝑝𝑝
𝑝𝑝+𝑞𝑞

�1
2

ln �4
𝛿𝛿
� �1 − 𝑎𝑎√𝑞𝑞

𝑏𝑏√𝑝𝑝
� − ��1

2
ln �4

𝛿𝛿
� − �1

2
ln �2

𝛿𝛿
���. 

Assuming that we have a sufficiently large number of diff-distribution source data 

(i.e., 𝑝𝑝 ≫ 𝑞𝑞 with 𝑎𝑎 and 𝑏𝑏 being fixed), then we have 𝑝𝑝
𝑝𝑝+𝑞𝑞

≈ 1. Moreover, for a fixed 

confidence level 𝛿𝛿, �1
2

ln �2
𝛿𝛿
� and�1

2
ln �4

𝛿𝛿
� are constants, denoted with 𝑐𝑐1 and 𝑐𝑐2, 

respectively. Therefore, we approximate ∆𝑑𝑑 as follows: 

∆𝑑𝑑 ≈ 𝑏𝑏
√𝑞𝑞
�𝑐𝑐1 −

𝑎𝑎√𝑞𝑞
𝑏𝑏√𝑝𝑝

𝑐𝑐2�. 

From our analysis, we gain theoretical insights on whether and to what extent 

transfer learning is more beneficial than re-training a prediction model. First, the 

amount of same-distribution source data influences transfer learning effectiveness. 

When we have a sufficiently large number of diff-distribution source data (i.e., 𝑝𝑝 ≫ 𝑞𝑞 
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with 𝑎𝑎 and 𝑏𝑏 being fixed), we have 1 − 𝑎𝑎√𝑞𝑞
𝑏𝑏√𝑝𝑝

> 0, meaning that transfer learning 

reduces the error bound. In response to detected changes, the relative magnitude 

between 𝑝𝑝 and 𝑞𝑞 varies depending on the timing of when the prediction model is 

adjusted (i.e., re-trained). As the number of same-distribution source data points 

increases, transfer learning would retain less of an advantage.  

Second, the term 𝑏𝑏
√𝑞𝑞

 indicates the upper bound of approximation error when 

only using same-distribution data. Given that transfer learning is beneficial in 

reducing the error bound, we expect the effectiveness of transfer learning to be more 

significant when the approximation error of only using the same-distribution target 

data is large. In a linear regression setting, given a fixed number of observations, 

increasing the number of predictors would result in less reliable estimation which 

would make it more beneficial to conduct transfer learning. The expected influence of 

the number of predictors on transfer learning effectiveness is consistent with the 

conclusion drawn by Ben-David et al. (2010) that increasing complexity of function 

classes measured with the VC dimension would favor using diff-distribution source 

data.  

Third, the effectiveness of transfer learning depends on the relative 

magnitude of 𝑎𝑎 and 𝑏𝑏 which in turn depends on the underlying data pattern change. 

When the data pattern remains unchanged, all the data points are selected to source or 

target data completely by random; thus, 𝑤𝑤𝑖𝑖 = 1 and 𝑎𝑎 = 𝑏𝑏; whereas when there is a 

systematic sample selection process, we will observe a variation of 𝑤𝑤𝑖𝑖 which will 

likely increase the upper bound 𝑎𝑎.28 Although the underlying true weight 𝑤𝑤𝑖𝑖 is 

unknown, one observation following this analysis is that the advantage of transfer 

 
28 A more nuanced reasoning is that, when all the data points are equally selected to source or 
target data, we have Pr(𝑟𝑟 = 0|𝒙𝒙,𝑦𝑦) = Pr(𝑟𝑟 = 1|𝒙𝒙,𝑦𝑦) = 0.5, meaning that the formation of 
source data and target data is as random as a coin toss. Then according to equation (3.6), the 
weight of any source data point 𝑤𝑤𝑖𝑖 becomes a constant. Without loss of generality, we assume 
that the constant equals to one thus 𝑎𝑎 = 𝑏𝑏. When different data points are systematically 
selected with the probability Pr(𝑟𝑟 = 0|𝒙𝒙,𝑦𝑦) varying from zero to one, we need a greater upper 
bound of 𝑤𝑤𝑖𝑖.  



95 

 

learning over re-training tends to diminish when there exists changes in the data 

patterns. Intuitively, when the data pattern undergoes a large change, using the diff-

distribution data could be sub-optimal (Ben-David et al., 2010). In practice, the extent 

of changes is difficult to measure ex-anti since same-distribution source data is 

scarce, thus it would be difficult to use the extent of change as a factor to judge 

transfer learning effectiveness. That said, in our subsequent simulation analysis, we 

vary the underlying sample selection mechanism to gain theoretical insights. 

Although it is difficult to exactly quantify the approximation error of 

prediction models without restrictive assumptions such as variables’ distribution, the 

nature of the underlying changes, and the specification of prediction models, our 

theoretical analysis suggests several directions for better appreciating the 

effectiveness of transfer learning. In the following section, we examine the trade-offs 

inherent in responding to changes in a change detection setting. 

3.4 Data Experimentations 

When data pattern changes, data analysts face the trade-off of whether to apply 

transfer learning in the first place. Moreover, they also face a trade-off with the time 

dimension – whether to make an adjustment immediately or at a later time point (to 

incorporate more same-distribution source data to train a more accurate model for the 

target task). Finally, implementing transfer learning requires splitting the source data 

to the same-distribution and diff-distribution components a-priori. In practical 

applications, data analysts have to distinguish them based on observed information 

and their own judgement.  

To depict a full picture on these practical issues, we design a simulation study 

to systematically evaluate the effectiveness of transfer learning. The changing data 

pattern occurs under the sample selection framework and the trade-offs regarding 

transfer learning are triggered by the detected change in data environments. We 



96 

 

investigate the trade-offs under different simulation settings by systematically varying 

the number of predictors being used and extents of change in the data pattern. 

3.4.1 Simulation of Changing Data Patterns 

The prediction model we focus on is a linear regression model. As discussed 

previously, the complexity of a linear regression model is largely determined by the 

number of predictors – as the number of predictors increases, a growing number of 

observations is required to derive a reliable prediction model. As such, transfer 

learning would be particularly beneficial to high-dimensionality prediction problems.  

In our simulation study, we use a linear model of the form 𝑦𝑦 = 𝒙𝒙 × 𝜷𝜷 + 𝜀𝜀 

with the number of predictors being 𝑘𝑘, where 𝑘𝑘 takes value from {10, 20, … , 50, 60}. 

The predictors 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) are taken from a k-dimensional normal distribution 

as follows:  

𝒙𝒙~𝒩𝒩𝑘𝑘(𝝁𝝁,𝛴𝛴), 

with mean 𝝁𝝁 being a zero vector and elements (𝜎𝜎𝑖𝑖𝑖𝑖) of the covariance matrix being 

0.5 for 𝑖𝑖 ≠ 𝑗𝑗 and 1 for 𝑖𝑖 = 𝑗𝑗. Coefficient parameters 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑘𝑘 are set as ones. The 

error term 𝜀𝜀 is drawn from a normal distribution. As the number of predictors 

increases, the variance of 𝒙𝒙 × 𝜷𝜷 increases. Since the number of predictors ranges 

from 10 to 60, to fix the model fit (R2) at a moderate level, we set the variance of the 

error term as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙 × 𝜷𝜷) ×
1 −  𝑅𝑅2

𝑅𝑅2
. 

Furthermore, we let R2 to be 0.6. Results are broadly similar when R2 equals 0.2 or 

0.8. We use a sample selection model to separate the simulated data to two data sets 

that exhibit different relationships between predictors 𝒙𝒙 and the outcome variable 𝑦𝑦. 

The model we employ is a probit model as follows:  

Pr(𝑟𝑟 = 0|𝒙𝒙,𝑦𝑦) = 𝛷𝛷�𝜓𝜓𝑦𝑦𝑦𝑦 + 𝝍𝝍𝒙𝒙𝒙𝒙�. 
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Pr(𝑟𝑟 = 0|𝒙𝒙,𝑦𝑦) of an observation (𝒙𝒙,𝑦𝑦) is the probability that it exhibits the 

different data pattern as the target data. Separation of the simulated data is realized 

through a Bernoulli trial. To change the relationship between 𝒙𝒙 and 𝑦𝑦 across the two 

data sets (𝑟𝑟 = 0 versus 𝑟𝑟 = 1), it is important to set the coefficient parameter 𝜓𝜓𝑦𝑦 to be 

non-zero. Otherwise, it becomes the well-known exogenous sample selection case 

and does not result in different coefficient parameters that capture the relationship 

between 𝒙𝒙 and 𝑦𝑦. We vary the magnitude of 𝜓𝜓𝑦𝑦 to vary the extent of changes. In 

particular, to let the variation of 𝜓𝜓𝑦𝑦 successfully controls the extent of changes, we 

set 𝝍𝝍𝒙𝒙 as an all-ones vector and let 𝜓𝜓𝑦𝑦 take value from {0.3, 0.5, …, 1.5}. Figure 3-2 

shows that the extent of change can indeed be manipulated by varying 𝜓𝜓𝑦𝑦. The 

change across two data sets are measured with the Euclidean distance between the 

two vectors of coefficient parameters. For different number of predictors in use, 

increasing 𝜓𝜓𝑦𝑦 leads to increased Euclidean distances between coefficient vectors of 

the two data sets. 

 

Figure 3-2 Simulation of Changing Data Patterns through Sample Selection 

3.4.2 Detecting Changes in Data Environments 

When data patterns undergo changes, it becomes necessary to adjust the prediction 

model to avoid deteriorating prediction accuracy. Transfer learning combines the 

same-distribution data and weighted diff-distribution data to generate an adjusted 
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prediction model. The point in time where the change takes place can then be the 

cutoff point between same-distribution and diff-distribution data sets.  

In practical applications, however, it is true that a data analyst would not have 

the foresight on future changes. We argue then that data analysts should monitor the 

performance of the prediction model and signals of deteriorating prediction accuracy 

such that it may be necessary to adjust the model. In the data mining literature, 

several algorithms have been proposed for monitoring errors of machine learning 

models, such as the adaptive windowing algorithm (ADWIN; Bifet and Gavalda 

2007) among others. 

In Figure 3-3, we illustrate the change detection process. Suppose a change 

takes place at 𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∗  but the time of actual change point is unbeknownst to the data 

analyst. An error monitoring process would be able to detect the presence of the 

change at time 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and estimate that the prediction model most likely started to 

produce less accurate predictions since time 𝑡̂𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. Given the inferred changing 

point 𝑡̂𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, data records that appear after it can be viewed as same-distribution 

source data while the ones before that point can be viewed as diff-distribution source 

data. Diff-distribution source data consists mainly of historical source data that is less 

relevant, while same-distribution source data consists mainly of timely-relevant data 

to the target data pattern. 

 
Figure 3-3 Change Detection in Dynamic Data Environments 
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In our simulations, the information for detecting changes is the out-of-sample 

prediction error of a prediction model trained using 10,000 source data records. These 

10,000 source data records can be viewed as historical data within which no 

significant change of data pattern takes place. The out-of-sample prediction is first 

conducted on 1,000 data points following source data pattern and then 1,000 data 

points following target data pattern. Therefore, the underlying change of data pattern 

takes place at time t=1,000 if we view the first data point for conducting out-of-

sample prediction as t=0. Note that here t does not indicate the time instance but the 

order of observing data points over time. In practical application, data can be 

collected at irregular time intervals.  

Change detection is conducted based on the sequence of out-of-sample 

prediction error. In particular, for every record of prediction error, a test of change is 

conducted using the ADWIN algorithm (Bifet and Gavalda 2007).29 The idea of 

ADWIN is intuitive as introduced earlier. It requires a user-input 𝛿𝛿 parameter as an 

upper bound of the false positive rate. During our experimentations, the change 

detection time point generally varies a little given different 𝛿𝛿 within the interval (0, 

1). This is consistent with the observations of Ang et al. (2012). We set the 

confidence value to be 0.3 and results are qualitatively similar under different values 

of 𝛿𝛿 at 0.1 or 0.9. 

In Figure 3-4, we show (a) the delay in detecting the change, calculated as 

𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∗ , and (b) the number of same-distribution source data used when the 

change is detected, calculated as 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡̂𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, under different simulation settings 

of extent of change (𝜓𝜓𝑦𝑦) and number of predictors. A larger extent of change can be 

more promptly detected.  However, we also note that after the change is successfully 

detected, challenges will still remain. The size of same-distribution source data 

 
29 We use the adwin function provided by scikit-multiflow package: https://scikit-
multiflow.github.io/scikit-multiflow/skmultiflow.drift_detection.adwin.html. 

https://scikit-multiflow.github.io/scikit-multiflow/skmultiflow.drift_detection.adwin.html
https://scikit-multiflow.github.io/scikit-multiflow/skmultiflow.drift_detection.adwin.html
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(generally 20~50 data points) is often insufficient to re-train the prediction model for 

the target data.  

(a) Delay in Detection (b) Same-distribution Source Data 

  

Figure 3-4 Change Detection Results 

3.4.3 Trade-offs in Response to Changes  

Due to the scarcity of the same-distribution source data, we face a trade-off between 

transfer learning using both same-distribution and diff-distribution source data, and 

retraining a model only using the same-distribution source data set – i.e., the trade-off 

between bias and efficiency. The out-of-sample prediction error of a linear model 

depends on both the bias and efficiency in parameter estimation (e.g., for mean 

squared error, its expectation can be decomposed to the bias and variance 

components: 𝐸𝐸�𝑦𝑦 − 𝒙𝒙𝜷𝜷��2 = �𝐸𝐸�𝑦𝑦 − 𝒙𝒙𝜷𝜷���2 + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦 − 𝒙𝒙𝜷𝜷��. Using only the same-

distribution source data set favors the minimization of the bias but will result in larger 

variance in parameter estimation. 

In addition, another trade-off emerges simultaneously when the change is 

detected – i.e., when the prediction model should be retrained. It is within expectation 

that making the adjustment at a later point in time allows the data analyst to 

incorporate a larger same-distribution source data set to generate a more accurate 

model for the target task. However, what is unknown is what is the extent of the 



101 

 

benefit and whether this benefit outweighs the cost of deteriorating prediction 

performance before the retraining is conducted. Moreover, this question needs to be 

answered for different response strategies (i.e., transfer learning vs. simply retraining 

using same-distribution source data).  

3.5 Results 

3.5.1 The Trade-off on Whether and How to Implement Transfer Learning  

When the same distribution source data is scarce, transfer learning augments the 

(re)training dataset by leveraging the diff-distribution data. Furthermore, regarding 

how to conduct transfer learning, there are alternative approaches. First, a naïve 

approach is to expand the sample size for training a prediction model by uniformly 

weighting all source data examples. This approach incorporates relevant information 

from same-distribution data to a limited extent as the training sample is dominated by 

diff-distribution data. Second, the proposed probabilistic weighting approach is 

shown to generate unbiased estimation of the expected loss. Hence the second 

transfer learning approach is to train a prediction model using uniformly weighted 

(assigned with a weight of ones) same-distribution data and probabilistic weighted 

diff-distribution data. To obtain weights according to Equation (3.6), we need to 

estimate for each diff-distribution data record the probability that it exhibits different 

data pattern from the target data. This probability can be estimated with a probit 

model. The dependent variable is the label for the source data (ones for diff-

distribution source data and zeros for same-distribution source data) and the 

explanatory variables include all the predictors 𝑥𝑥 and the variable to be predicted 𝑦𝑦. 

Third, based on the estimated probability that a source data record exhibits the same 

or different data pattern to the target data, one can choose to remove the diff-

distribution data that are unlikely to exhibit the target data pattern and train a model 

using uniformly weighted same-distribution data and remaining diff-distribution data.  
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In our subsequent analyses, we will present the trade-off between only using 

the same-distribution source data (named as ‘Dropping’ for short) and three 

alternative transfer learning methods: 1) equally weighting all source data, named as 

‘Transfer - equal weight’, 2) combining same-distribution data (assigned with weight 

ones) and probabilistic weighted diff-distribution data, named as ‘Transfer - 

weighting’, and 3) combining same-distribution data with filtered diff-distribution 

data (all assigned with weight ones), named as ‘Transfer - filtering’.  

As shown in Figure 3-4, when the change is detected, the number of same-

distribution source data can be even less than the number of predictors, making the 

prediction model unidentifiable. In such cases, we evaluate the performance of 

difference response methods when the number of same-distribution source data is at 

least the number of predictors, which is consistent with the experimentation of Ben-

David et al. (2010).30 The outcomes of interest are mean squared error (MSE), 

squared mean bias (Bias2), and variance of the error (Variance). Since the variance of 

the variable to be predicted increases with the number of predictors being used, all the 

errors are normalized by the variance of the variable to be predicted. Results 

presented are based on four hundred replications of the simulation. 

Figure 3-5 shows the pairwise comparisons among the four methods based on 

MSE of 1,000 data points following the target data pattern (Appendix 2.2 provides 

tabulated results of Figure 3-5). The z-axis indicates the difference of MSE between a 

pair of methods (the MSE of the former method minus the MSE of the latter method). 

Figure 3-5a shows the relative performance between ‘Dropping’ and ‘Transfer-equal 

weight’. These two approaches can be viewed as two extremes in their response to 

 
30 When the number of same-distribution source data is equal to the number of predictors, the 
linear model under ‘Dropping’ is just identifiable, but the prediction performance fluctuates 
largely. We monitor the performance of ‘Dropping’ until it achieves a relatively stable 
prediction performance - that is the number of same-distribution source data being the number 
of predictors plus ten. Results are qualitatively similar using slightly increasing number of 
same-distribution source data (e.g., 1.1 times of the number of predictors plus ten) and are 
presented in Appendix 2.2.  
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changes. ‘Dropping’ implicitly assumes that the previously collected diff-distribution 

data is completely irrelevant thus the benefit of using transfer learning (reduced 

variance) does not compensate the large bias caused by the diff-distribution data. 

‘Transfer-equal weight’ implicitly assumes a persistent data pattern overtime thus the 

same-distribution and diff-distribution data are assigned with uniform (i.e., equal) 

weights. Results show that in changing data environments, ‘Dropping’ results in 

lower MSE than ‘Transfer-equal weight’ (cf., see negative difference of MSE 

between ‘Dropping’ and ‘Transfer-equal weight’) when there is a relatively large 

extent of change and a smaller number of predictors – the MSE difference is 1.49 

under 𝜓𝜓𝑦𝑦=0.3 with 60 predictors, and -0.60 under 𝜓𝜓𝑦𝑦=1.5 with 10 predictors.  

   

 

  

  

 

Figure 3-5 Pairwise Comparison of the Four Methods in Response to Changes 

This is consistent with our expectation regarding the bias-variance 

decomposition, as shown in Figure 3-6 (tabulated results are provided in Appendix 

2.3). Figures 3-6a and 3-6b show the difference in squared bias and variance, 
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respectively, between ‘Dropping’ and ‘Transfer-equal weight’ approaches. Using the 

diff-distribution data results in greater bias compared to ‘Dropping’ (cf., see negative 

values in the difference of Bias2 between ‘Dropping’ and ‘Transfer-equal weight’ in 

Figure 3-6a) and the increase in bias is more prominent when the extent of change 

increases. With respect to variance, ‘Dropping’ increases error variance (cf., positive 

values in the difference of variance between ‘Dropping’ and ‘Transfer-equal weight’ 

in Figure 3-6b) and the increase in variance is exacerbated when the number of 

predictors increases. 

 
Figure 3-6 Bias-Variance Trade-off in Responding to Changes 

Among the transfer learning approaches (see Figures 3-5d, 3-5e, 3-5f), 

‘Transfer-weighting’ outperforms both ‘Transfer-equal weight’ and ‘Transfer-

filtering’. Between ‘Transfer-weighting’ and ‘Transfer-equal weight’ (see Figure 3-

5d), the probabilistic weighting approach adjusts the prediction model towards the 

target data pattern which alleviates the bias caused by diff-distribution source data. 

Between ‘Transfer-weighting’ and ‘Transfer- filtering’ (see Figure 3-5f), the 

probability weighting provides more information than filtering the diff-distribution 

data (which can be viewed as discretizing the real-value weighting to a 0/1 weighting 

scheme).   

Finally, ‘Transfer-weighting’ outperforms ‘Dropping’ (see Figure 3-5b). The 

MSE difference between ‘Dropping’ and ‘Transfer-weighting’ increases when there 

is a relatively smaller extent of change and a larger number of predictors – the MSE 

difference is 1.59 under 𝜓𝜓𝑦𝑦=0.3 with 60 predictors, and -0.16 under 𝜓𝜓𝑦𝑦=1.5 with 10 
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predictors. This is again consistent with our expectation. As the number of predictors 

increases, more observations are required to generate a reliable prediction model, 

which disadvantages the ‘Dropping’ approach. Under a relatively small change, the 

data pattern of the diff-distribution data is relatively close to that of the target data 

thus it is more beneficial to leverage on these data points. Moreover, even if the 

extent of change increases, ‘Transfer-weighting’ still achieves better performance 

than ‘Dropping’. This is because the probability weighting approach generates an 

unbiased estimate to the expected loss in the target data, as discussed in Equation 

(3.5). 

The detection of change may be triggered not only due to the dynamic 

relationship between predictors and the outcome variable, but also due to the 

decreased predictability of the outcome variable. In our robustness tests, we fix the 

relationship between predictors and the outcome variable but double the variance of 

the error term in the prediction model for the target data points. Under this scenario, 

an optimal way of developing the prediction model in response to “changes” is to use 

the source data set with uniform weights across all examples. Results show that 

‘Transfer-weighting’ obtains similar results as ‘Transfer-equal weight’ and the 

difference in MSE between the two methods is less than 0.02 under different number 

of predictors. ‘Dropping’ results in a much greater MSE than the two transfer learning 

approaches.  

Overall, at the time when change is detected, the strategic transfer learning 

based on sample selection probability generates higher prediction accuracy compared 

to discarding the diff-distribution source data or equally weighting all the source data 

records. 

3.5.2 The Trade-off on When to Retrain the Prediction Model    

In the previous subsection, the trade-off faced by data analysts when a change is 

detected is due to the scarcity of same-distribution data. Under such a situation, data 
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analysts could consider waiting for some time to allow for more same-distribution 

source data to be collected for use in re-training a new model for future target data. 

An increasing number of same-distribution source data will generate more accurate 

predictions, for both transfer learning methods and for ‘Dropping’. However, a 

notable downside is the inflated prediction error in the data before the model is re-

trained. Therefore, it is important to examine to what extent the benefits of 

incorporating more same-distribution data outweighs the opportunity costs arising 

from later adjustment. 

Here, we focus on comparing ‘Dropping’ and ‘Transfer-weighting’. We 

choose ‘Transfer-weighting’ out of the three transfer learning methods since it 

predominantly outperforms the other two under most simulation settings. Table 3-3 

illustrates the trade-off with the time dimension under 2×2 combinations of 

simulation settings – i.e., the number of predictors being 20 and 50, and 𝜓𝜓𝑦𝑦being 0.5 

and 1.3. Results are based on four hundred replications of simulations. Other 

simulation settings with different number of predictors and values of 𝜓𝜓𝑦𝑦 exhibit 

qualitatively similar patterns. 

Among the figures presented in Table 3-3, the x-axis, ranging from 0 to 1000, 

indicates the number of data points being evaluated) since the actual change in the 

data pattern. The y-axis indicates the accumulated squared error (ASE) of the data 

points being evaluated. The trade-off in the time dimension is illustrated by the ASE 

of three lines (solid blue line, orange dashed line, and green dotted line) that use 

different number of same-distribution source data records (1/3/5 times the number of 

predictors) to adjust the prediction model. For the lines depicted in each figure, the 

slope represents the model prediction accuracy MSE, thus their turning points happen 

at around 1/3/5 times the number of predictors.31 The first column shows the results 

when the prediction model is adjusted by ‘Transfer-weighting’, the second column 

 
31 The turning points are not exactly located at 1/3/5 times of the number of predictors due to 
the delay in change detection. 
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shows results of ‘Dropping’, and the third column shows the difference in ASE 

between ‘Dropping’ and ‘Transfer-weighting’. 

 Transfer-weighting Dropping Dropping vs. 
Transfer-Weighting 

   

   

   

   

Table 3-3 Illustration of the Trade-off of When to Adjust the Prediction Model 

The performance of ‘Transfer-weighting’ is relatively insensitive to the 

number of same-distribution data points being used, especially for low-dimensionality 

prediction problems (i.e., 20 predictors). For instance, comparing the situation of 20 

predictors versus that of 50 predictors under 𝜓𝜓𝑦𝑦=0.5, the slop of the lines after 

adjusting the prediction model are closer to each other for 20 predictors than for 50 

predictors. A similar pattern can be found by comparing 20 predictors versus 50 
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predictors under 𝜓𝜓𝑦𝑦=1.3. Therefore, waiting for more same-distribution data to 

incorporate in the re-training is more beneficial for higher dimension prediction 

problems. However, the benefit is minimal for ‘Transfer-weighting’, since we 

observe relatively stable performance across different number of same-distribution 

data.  

‘Dropping’ is much more sensitive compared to ‘Transfer-weighting’ to the 

number of same-distribution data points being used. This can be shown by the largely 

flattened ASE slope comparing 3 times and 1 time the number of predictors, 

especially for high-dimensionality prediction problems (i.e., 50 predictors). For the 

‘Dropping’ method, the ASE slopes under 3 times and 5 times the number of 

predictors are close to each other, which is due to decreasing marginal benefits of 

same-distribution source data points in improving the model’s prediction 

performance. 

Comparing ‘Transfer-weighting’ and ‘Dropping’ in the third column, we 

observe an obvious benefit of transfer learning in adjusting the model right at the time 

that changes are detected, as shown by the positive slopes of the blue lines (i.e., 

compared to ‘Transfer-weighting’, ‘Dropping’ has greater accumulated error). 

However, if data analysts decide to adjust the prediction model after more same-

distribution data are collected, ‘Dropping’ generally outperforms transfer learning, as 

shown by the negatively sloped orange dashed and green dotted lines. Intuitively, 

with the availability of more same-distribution data, the data scarcity is no longer a 

problem and there is less reason to use diff-distribution data. In addition, the noise in 

specifying the diff-distribution data would influence the accuracy of estimating the 

selection probability. 

To investigate the general trends of prediction performance at different 

timing of adjusting the prediction model, we gradually evaluate the prediction 

performance since the detection of changes at the interval of 0.1 times the number of 
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predictors. In Figure 3-7, we present the prediction performance MAE over the 1,000 

target data points when the prediction model is adjusted at 1, 1.1, 1.2, …, 5.8, 5.9, 6 

times the number of predictors. Results of  2×2 combinations of simulation settings 

are presented – i.e., the number of predictors being 20 and 50, and 𝜓𝜓𝑦𝑦 being 0.5 and 

1.3. Full results for 6×7 simulation settings are presented in Appendix 2.4. It is shown 

that in changing data environments, ‘Transfer-equal weight’ is always inferior to both 

‘Dropping’ and ‘Transfer-weighting’. When we compare ‘Dropping’ with ‘Transfer-

weighting’, at the early stages after change detection, ‘Transfer-weighting’ largely 

outperforms ‘Dropping’. However, as the number of predictors increases, the two 

approaches tend to converge, but ‘Dropping’ achieves slightly lower MSE compared 

to ‘Transfer-weighting’ when the extent of change is larger (𝜓𝜓𝑦𝑦=1.3). Finally, at the 

setting of 𝜓𝜓𝑦𝑦=1.3 and 50 predictors, we observe a slight increasing trend of MSE for 

‘Dropping’ as the timing of adjusting the prediction model is further delayed.  This is 

driven by the fact that the improvement in prediction accuracy for subsequent target 

data points does not compensate the inflated prediction error of target data points 

before prediction model is adjusted.  

 
Figure 3-7 Prediction Performance and the Timing of Adjusting the 

Prediction Model 

Overall, since the two decisions of using which strategy to adapt to the 

change and when the model should be adapted have to be made simultaneously, our 
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simulation results show that if the data analysts are able to collect more same-

distribution data, ‘Dropping’ and re-training the prediction model at a later time point 

would be a simpler and superior way of responding to the changes. However, 

sometimes the target data do not come in a sequential pattern but are instead in bulk. 

In such a case, a response to the change needs to be made immediately which will 

favor the transfer learning strategy. 

3.6 Conclusions 

Improving decision outcomes in dynamic data environments is a common goal in 

many decision-making settings (Meyer et al. 2014). In dynamic data environments, 

the traditional supervised learning approach to assisting decision making may results 

in suboptimal outcomes since the historical pattern captured by the machine learning 

model may not repeat in the current period. To be well prepared for underlying 

changes in data environments, consistently monitoring the prediction performance 

and re-considering the fitness of the prediction model are necessary. However, the 

challenge is how to adjust the prediction model given very little information that 

represents the target data pattern.  

In this study, we investigate transfer learning which leverages and balances 

the use of the same-distribution source data and diff-distribution source data jointly. 

Transfer learning algorithms have been widely used to make predictions in changing 

data environments (Ganin et al. 2016; Pan et al. 2008). However, due to the existence 

of confounding factors in the empirical data experimentations and varying design 

mechanisms of transfer learning algorithms, we lack a clear understanding of when 

and to what extent transfer learning works.  

Motivated by the research gap in inductive transfer learning and the lack of 

theoretical guidelines, we first propose a transfer learning framework from the sample 

selection perspective. Compared to existing heuristic instance-transfer methods, the 

proposed method is built upon ERM theory with the objective of minimizing the 
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expected prediction error of target data using weighted source data. Moreover, we 

conduct a conceptual analysis on the effectiveness of transfer learning by 

decomposing the approximation error and derive insights on the effectiveness of 

transfer learning. This relates to the practical trade-off of whether we should be using 

transfer learning or should simply retrain a model using the same distribution data in 

the first place. Moreover, due to the scarcity of same-distribution data, another trade-

off we identify is whether we should retrain the prediction model immediately when 

the change is detected or at a later time point when more same-distribution data has 

become available to train a more accurate prediction model for the target data. We 

conduct simulation analyses to investigate the overall trade-offs in the context of a 

dynamic data environment where these two trade-offs are invoked by the change 

detected.  

Overall, our study contributes to the transfer learning literature by developing 

a theoretical framework for understanding transfer learning from a sample selection 

perspective. Our simulation results offer a comprehensive depiction on the two trade-

offs and provide practical implications for data analytics in dynamic data 

environments. Transfer learning is generally robust to dynamic data environments 

and also overcomes the scarcity problem in adjusting the prediction model. However, 

as the number of same-distribution data grows, retraining the model is more efficient 

than transfer learning. Therefore, the choice of the optimal strategic response to data 

pattern changes depends on the practical routine of data collection and data analysis. 

If the data analyst can expand the same-distribution data set, simply retraining the 

prediction model would be superior to transfer learning. However, sometimes the 

delay in adjusting the prediction model may result in substantial loss, or the collection 

of additional same-distribution data could be costly. In such situations, an immediate 

response to the change need to be made which supports the transfer learning strategy. 
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CHAPTER 4  CONCLUSIONS  

Data analytics has become a popular and promising research area that attracts 

substantive attention from practitioners and academia. However, to make successful 

applications of data analytics in real-world practice, we need to understand the theory 

and assumptions of appropriate applications. As discussed in the Introduction 

Chapter, one important fundamental challenge of applying data analytics is the 

heterogeneity in data patterns. The first study investigates the heterogeneity between 

observed values and unobserved values, while the second study investigates the 

heterogeneity between source data (e.g., historical data) and target data (e.g., recent 

data generated in the new data regime). For both problems, augmenting or identifying 

the information that explains how the data patterns differ to each other, and making 

proper use of this information are critical issues.  

In the first essay, built upon the missing value literature, I employ the missing 

value mechanism as a device to represent systematic difference between observed and 

unobserved values. Under the NMAR mechanism where a variable’s missingness 

depends directly on its value, ignoring the missingness mechanism often results in 

invalid statistical estimations. Motivated with research gaps in the literature, I focus 

on missing values imputation under the general NMAR mechanism. We use a 

classification model, such as logistic regression or machine learning model to 

represent the missing value mechanism, which is in turn incorporated in the process 

of imputing missing values. Since missing values are unknown in the first place, we 

do not have sufficient information to directly estimate the unknown parameters in the 

missingness mechanism. In the proposed semi-supervised missing value imputation 

approach, to augment the missing information, I estimate the imputation model and 

missing value mechanism with a semi-supervised learning approach by randomly 

drawing missing values based on their conditional distribution. In the proposed 

Monto Carlo based maximum likelihood estimation approach, I correct the bias in 
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coefficient estimation by jointly estimating the relationship between variables and the 

missingness mechanism. 

In the second essay, I focus on the problem of statistical learning in dynamic 

data environments. Traditional machine learning uses historical data as the source 

data to obtain a prediction model, and then apply the model to predict future 

information. When the data pattern undergoes a significant change, for instance, with 

different interdependencies between predictors and the variable to be predicted, an 

inductive transfer learning problem, prediction performance may drop dramatically. 

A simple solution to implement machine learning in such dynamic data environments 

is to re-train a machine learning model using re-collected current data. However, 

current data is often scarce, thus it would be optimal to leverage both historical data 

and current data. To obtain a theoretical understanding on how to conduct transfer 

learning, I propose to approximate the underlying changes by distinguishing the 

same-distribution and diff-distribution data sets through a sample selection model, 

which guides the training of machine learning algorithms using same- and diff-

distribution data sets in a proper direction to fit the target data pattern.  

Moreover, a challenge in solving the problems examined in both studies lies 

in the scarcity of usable information to identify the heterogeneity in data patterns. The 

missing values are almost unknown without an additional follow up data collection 

process. However, uncovering missing values by interventions would be expensive or 

even infeasible, such as in the healthcare practice where medical resources are very 

limited (Zhang et al. 2005). Therefore, analysts need to consider cost and benefit in 

augmenting usable information. A tradeoff on exploration and exploitation is 

examined in the second essay through simulation analysis. In dynamic environments, 

this tradeoff happens at the time dimension – when faced with changes, whether we 

should adjust the model based on scarce data exhibiting the target pattern, or waiting 

for a certain period and to incorporate more same-distribution source data to train 
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more accurate model for the target task. 

In summary, theoretical understanding of how to develop models that are 

resilient to heterogeneity in complex data environment has important implications in 

promoting appropriate usage of data analytics in today’s complex data environment. 

The proposed methods in this dissertation have practical implications in handling 

missing values and developing prediction models that are robust to changes. The 

illustration of tradeoff between enhancing the model performance by learning from 

more information and elapsing opportunities of correcting decision outcomes 

provides insights on developing strategic response to changes. 

Built upon the dissertation work, there are several promising future research 

directions. For the missing value study, another important future work is to evaluate 

different missing value handling methods with respect to the unbiasedness of 

parameter estimates in empirical IS research questions. In survey-based empirical 

research, respondents may refuse to answer certain fields of the questionnaire (Sivo et 

al. 2006). In empirical studies on the interaction effect between research and 

development (R&D) expenses and IT investment, researchers have to deal with the 

large number of missing values of R&D (Banker et al. 2011; Bardhan et al. 2013; 

Gomez et al. 2017; Havakhor et al. 2019; Kleis et al. 2012; Mithas et al. 2017; 

Ravichandran et al. 2017). Firms may not disclose R&D expenses to avoid releasing 

proprietary information (Koh and Reeb 2015). Whether missing values in these 

studies significantly bias the estimates of regression coefficients raise grave concerns 

among empirical researchers. This direction would make significant contribution to 

enhance the scientific validity of empirical studies. 

In dynamic data environment, making response to the changes not only 

involves mechanical applications of prediction models, but also the input of human 

domain knowledge. Human intelligence is characterized by the ability to learn and 

adapt efficiently to new environments (Collins 2019). Domain knowledge from 
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human experts would play an important role in supplementing scarce information in 

the new environment (Liao and Ji 2009). For instance, to detect changes, the 

threshold of significant change is determined by a human expert who may hold 

aggressive or conservative opinions in claiming the change. Thus, the overall 

performance of prediction model considering the response under possible false alarm 

will be determined by the validity of domain knowledge. In the simulation analysis 

examining the exploration and exploitation tradeoff, the exploitation side did not 

account for additional domain knowledge on change from experts. As data analytics 

is being integrated into the business world, human knowledge would interact with the 

design of algorithms more frequently. In future, I intend to examine how domain 

knowledge, which is often external above the prediction model, can be incorporated 

in the construction of prediction models and complement the models’ performance in 

changing data environments.  
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APPENDIX 1 SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

Appendix 1.1 Detailed Review of Statistical Models for Handling Missing Values 

This appendix provides detailed descriptions for the state-of-the-art statistical 

methods under the MAR mechanism so that this thesis is self-contained, including (1) 

maximum likelihood estimation with EM (information source: Sections 8.3 and 8.4 of 

Little and Rubin (2014)), (2) multiple imputation (information source: Stata (2013) 

and Rubin (1987)), and (3) Multivariate Imputation by Chained Equations (MICE, 

information source: Van Buuren and Oudshoorn (2000)). Each method is presented 

with an independent set of notations so that they are consistent with the respective 

information sources as much as possible. 

Appendix 1.1.1 Maximum Likelihood Estimation with EM 

This sub-section describes the implementation of expectation maximization for 

maximum likelihood estimation. The information source is the content of Sections 8.3 

and 8.4 of Little and Rubin (2014).  

Different variables, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, …, are not distinguished. Instead, the whole 

data matrix is denoted with 𝑋𝑋. 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 denote the observed part and missing 

part of this data matrix respectively. In this sense, multiple variables may be subject 

to missing values, as illustrated in the following figure.  

𝑋𝑋 
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 … 
      
      
      
      
      

Figure A-1 Illustration of Incomplete Data Matrix 

Note: Figure A-1 is adapted from Figure 1.1 of Little and Rubin 2014 (Sect. 1.2). 

In Figure A-1, 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 indicates the un-shadowed data entries while 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 
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indicates the shadowed (missing) data entries. Such notation system largely simplifies 

the presentation of theories. For instance,  let 𝑓𝑓(𝑋𝑋|𝜃𝜃) = 𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚|𝜃𝜃) to denote the 

density function of the joint distribution of 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚.  

Let 𝑓𝑓(𝑋𝑋|𝜃𝜃) = 𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚|𝜃𝜃) denote the density of the joint distribution of 

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚. 𝜃𝜃 denotes the parameters of interest that determine the underlying 

data generation process (DGP) of the data 𝑋𝑋. The objective is to estimate 𝜃𝜃 using the 

incomplete data matrix 𝑋𝑋. For instance, if assume that 𝑋𝑋 follows a multivariate 

normal distribution, then 𝜃𝜃 contains the mean and the variance-covariance matrix. 

The marginal probability density of 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 is obtained by integrating out the 

missing data 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚: 𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃) = ∫𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 |𝜃𝜃)𝑑𝑑𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚. The likelihood of 𝜃𝜃 based 

on data 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 ignoring the missing-data mechanism (assuming MAR) is defined to be 

any function of 𝜃𝜃 proportional to 𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃): 

 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜) ∝ 𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃) = ∫𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 |𝜃𝜃)𝑑𝑑𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚, 𝜃𝜃 ∈ Ω𝜃𝜃,   (A.1) 

wherein Ω𝜃𝜃 indicates the parameter space of 𝜃𝜃. This 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜) is the objective 

function of the EM optimization method.  

Definition of the EM method is as the following (Little and Rubin 2014, 

Section 8.3). Let the 𝜃𝜃(𝑡𝑡) be the current estimate of the paremeter 𝜃𝜃.  

The E step of EM finds the expected complete-data log-likelihood over the 

probability of 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 as if the true 𝜃𝜃 were 𝜃𝜃(𝑡𝑡): 

 𝑄𝑄�𝜃𝜃|𝜃𝜃(𝑡𝑡)� = ∫𝑓𝑓(𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 |𝜃𝜃)𝑓𝑓�𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 |𝜃𝜃(𝑡𝑡),𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜� 𝑑𝑑𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚. (A.2) 

The M step of EM determines the 𝜃𝜃(𝑡𝑡+1) by increasing this expected 

complete-data log-likelihood: 

 𝑄𝑄�𝜃𝜃(𝑡𝑡+1)|𝜃𝜃(𝑡𝑡)� ≥ 𝑄𝑄�𝜃𝜃|𝜃𝜃(𝑡𝑡)�, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 ∈ Ω𝜃𝜃. (A.3) 
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Theorem A.1. shows the monotone property of EM. That is, EM algorithm 

increases 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜) at each iteration. 

Theorem A.1. (Little and Rubin 2014, Sect. 8.4) Every EM algorithm increases 

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜) at each iteration, that is,  

 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖�𝜃𝜃(𝑡𝑡+1)|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜� ≥ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖�𝜃𝜃(𝑡𝑡)|𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜�, (A.4) 

with equality if and only if  

 𝑄𝑄�𝜃𝜃(𝑡𝑡+1)|𝜃𝜃(𝑡𝑡)� = 𝑄𝑄�𝜃𝜃(𝑡𝑡)|𝜃𝜃(𝑡𝑡)�. (A.5) 

Appendix 1.1.2 Multiple Imputation   

Multiple imputation shares with single imputation two basic advantages, namely, the 

ability to use complete-data methods of analysis and the ability to incorporate the data 

collector's knowledge. For the second advantage of single imputation, readers can 

refer to Rubin (1987). Moreover, multiple imputation overcomes an obvious and 

important disadvantage of single imputation: the single value being imputed can 

reflect neither sampling variability about the actual value when one model for the 

missing data mechanism is being considered nor additional uncertainty when more 

than one model is being entertained (Rubin 1987, Section 1.4, 1.5). Rubin (1987) 

formally defined the proper multiple imputation in a general and conceptual way 

without imposing assumptions on the research sampling scheme and missing data 

mechanism. However, due to the difficulties in implementing the whole theory, in 

practice, softwares for multiple imputation only focus on the missing data issue and 

assume the MAR mechanism.  

In the following description of multiple imputation, the information source 

for the implementation of multiple imputation is the section on the methods’ 

description of mi impute mvn in Stata (2013), and the information source for 

combining estimates of multiple imputation is Rubin (1987).  
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Implementation of Multiple Imputation  

Under the MAR assumption, for multivariate imputation with arbitrary missing-data 

patterns, Schafer (1997) proposed a Joint Model approach to implement the multiple 

imputation. This approach assumes a multivariate distribution for all imputation 

variables and imputes missing values as draws from the resulting posterior predictive 

distribution of the missing data given the observed data. The predictive distribution is 

often difficult to draw from directly, so the imputed values are often obtained by 

approximating this distribution using data augmentation MCMC method.  

Let 𝑥𝑥1𝐶𝐶 , 𝑥𝑥2𝐶𝐶  , …, 𝑥𝑥𝑛𝑛𝐶𝐶  (note: 𝑥𝑥 in lower case) be a random sample from a 𝑝𝑝-

variate normal distribution recording values of 𝑝𝑝 complete variables. The sample size 

is 𝑛𝑛.  Let 𝑥𝑥1𝐼𝐼𝐼𝐼 , 𝑥𝑥2𝐼𝐼𝐼𝐼  , …, 𝑥𝑥𝑛𝑛𝐼𝐼𝐼𝐼  be a random sample from a 𝑞𝑞-variate normal distribution 

recording values of 𝑞𝑞 incomplete variables. Consider a multivariate normal regression  

 𝑥𝑥𝑖𝑖𝐼𝐼𝐼𝐼  =  𝑥𝑥𝑖𝑖𝐶𝐶Θ +  𝜖𝜖𝑖𝑖 , 𝑖𝑖 =  1, … ,𝑛𝑛, (A.6) 

where Θ is a 𝑝𝑝 × 𝑞𝑞 matrix of regression coefficients, and 𝜖𝜖𝑖𝑖 is a 1 × 𝑞𝑞 vector of 

random errors from a 𝑞𝑞-variate normal distribution with a zero mean vector and a 

𝑞𝑞 × 𝑞𝑞 positive-definite covariance matrix Σ. Let Θ and Σ be model parameters of 

interest. Consider the partition 𝑥𝑥𝑖𝑖𝐼𝐼𝐼𝐼  =  (𝑥𝑥𝑖𝑖(𝑚𝑚)
𝐼𝐼𝐼𝐼 ;  𝑥𝑥𝑖𝑖(𝑜𝑜)

𝐼𝐼𝐼𝐼 ) corresponding to missing and 

observed values of incomplete variables in observation 𝑖𝑖 for 𝑖𝑖 = 1,2, … ,𝑛𝑛. 

The data augmentation MCMC method aims to impute the missing values in 

𝑥𝑥𝑖𝑖 independently for each observation 𝑖𝑖 = 1,2, … ,𝑛𝑛. Data augmentation consists of 

two steps, an I step (imputation step) and a P step (posterior step), performed at each 

iteration 𝑡𝑡 =  0,1, …𝑇𝑇. At iteration 𝑡𝑡 of the I step, missing values in 𝑥𝑥𝑖𝑖 are replaced 

with draws from the conditional posterior distribution of 𝑥𝑥𝑖𝑖(𝑚𝑚) given observed data 

and current values of model parameters independently for each 𝑖𝑖 = 1,2, … ,𝑛𝑛. During 

the P step, new values of model parameters are drawn from their conditional posterior 
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distribution given the observed data and the data imputed in the previous I step. 

Mathematically, this process can be described as follows:  

I step: 

 𝑥𝑥𝑖𝑖(𝑚𝑚)
𝐼𝐼𝐼𝐼(𝑡𝑡+1)~𝑃𝑃�𝑥𝑥𝑖𝑖(𝑚𝑚)

𝐼𝐼𝐼𝐼 �𝑥𝑥𝑖𝑖𝐶𝐶 , 𝑥𝑥𝑖𝑖(𝑜𝑜)
𝐼𝐼𝐼𝐼 ,Θ(𝑡𝑡),Σ(𝑡𝑡)�,   𝑖𝑖 =  1, … ,𝑛𝑛. (A.7) 

P step: 

 Σ(𝑡𝑡+1)~𝑃𝑃 �Σ�𝑥𝑥𝑖𝑖𝐶𝐶 , 𝑥𝑥𝑖𝑖(𝑜𝑜)
𝐼𝐼𝐼𝐼 ,Θ(𝑡𝑡), 𝑥𝑥𝑖𝑖(𝑚𝑚)

𝐼𝐼𝐼𝐼(𝑡𝑡+1)�, (A.8) 

 Θ(𝑡𝑡+1)~𝑃𝑃 �Θ�𝑥𝑥𝑖𝑖𝐶𝐶 , 𝑥𝑥𝑖𝑖(𝑜𝑜)
𝐼𝐼𝐼𝐼 , 𝑥𝑥𝑖𝑖(𝑚𝑚)

𝐼𝐼𝐼𝐼(𝑡𝑡+1), Σ(𝑡𝑡+1)�. (A.9) 

The above steps are repeated until the specified number of iterations, 𝑇𝑇, is 

reached. The total number of iterations, 𝑇𝑇, is determined by the length of the initial 

MCMC burn-in period, 𝑏𝑏, and the number of MCMC iterations between imputations, 

𝑘𝑘. Specifically, 𝑇𝑇 =  𝑏𝑏 + 𝑚𝑚 × 𝑘𝑘, where 𝑚𝑚 is the number of imputations to be 

created. 𝑏𝑏 must be large enough so that the above chain converges to the stationary 

distribution 𝑃𝑃�𝑥𝑥𝑖𝑖(𝑚𝑚)
𝐼𝐼𝐼𝐼 , Σ,Θ�𝑥𝑥𝑖𝑖𝐶𝐶 , 𝑥𝑥𝑖𝑖(𝑜𝑜)

𝐼𝐼𝐼𝐼 � by iteration 𝑡𝑡 =  𝑏𝑏. 𝑘𝑘 must be large enough so 

that random draws for different imputations are approximately independent. 

Combining Estimates of Multiple Imputation 

Assume that with complete data, inferences for 𝜃𝜃 would be based on the statement 

that 

 (𝜃𝜃 −  𝜃𝜃�) ~𝑁𝑁(0,𝑈𝑈), (A.10) 

where 𝜃𝜃� is a statistic estimating 𝜃𝜃, 𝑈𝑈 is a statistic providing the variance of (𝜃𝜃� - 𝜃𝜃), 

and 𝑁𝑁(0,𝑈𝑈) is the normal distribution with mean 0 and variance 𝑈𝑈.  

Suppose that under a specified Bayesian model, 𝑚𝑚 sets of repeated 

imputations have been drawn and used to construct 𝑚𝑚 completed data sets. Let 𝜃𝜃�∗1, 



133 

 

𝜃𝜃�∗2,…, 𝜃𝜃�∗𝑚𝑚 be the value of statistics 𝜃𝜃� for each of these data sets. Let 𝑈𝑈∗1, 

𝑈𝑈∗2,…, 𝑈𝑈∗𝑚𝑚 be the value of statistics 𝑈𝑈 for each of these data sets. 

The 𝑚𝑚 repeated complete-data estimates and associated complete-data 

variances for 𝜃𝜃 under a model for nonresponse can be combined as follows (Rubin 

1987, p. 76). Let 

 𝜃̅𝜃𝑚𝑚 = ∑ 𝜃𝜃�∗𝑙𝑙𝑚𝑚
𝑙𝑙=1
𝑚𝑚

, (A.11) 

be the average of the 𝑚𝑚 complete-data estimates,  

 𝑈𝑈�𝑚𝑚 = ∑ 𝑈𝑈∗𝑙𝑙𝑚𝑚
𝑙𝑙=1
𝑚𝑚

, (A.12) 

be the average of the m complete-data variances, and 

 
𝐵𝐵𝑚𝑚 = ∑ �𝜃𝜃�∗𝑙𝑙−𝜃𝜃�𝑚𝑚�

′𝑚𝑚
𝑙𝑙=1 �𝜃𝜃�∗𝑙𝑙−𝜃𝜃�𝑚𝑚�

𝑚𝑚−1
, 

(A.13) 

be the variance between the 𝑚𝑚 complete-data estimates, where the superscript in 

�𝜃𝜃�∗𝑙𝑙 − 𝜃̅𝜃𝑚𝑚�
′
 indicates transpose when 𝜃𝜃 is a vector. The 𝜃̅𝜃𝑚𝑚 is the overall estimate of 

𝜃𝜃. The quantity 𝑇𝑇𝑚𝑚  = 𝑈𝑈�𝑚𝑚  +  (1 +  𝑚𝑚−1)𝐵𝐵𝑚𝑚 is the total variance of (𝜃𝜃 −  𝜃̅𝜃𝑚𝑚). 

For confidence intervals, Rubin (1987, p. 130) recommends using a Student’s 

t approximation,  

 𝑇𝑇𝑚𝑚
−1 2⁄  (𝜃𝜃 −  𝜃̅𝜃𝑚𝑚)~𝑡𝑡𝑣𝑣, (A.14) 

where the degree of freedom is  

 𝑣𝑣 = (𝑚𝑚 − 1) �1 + 𝑈𝑈�𝑚𝑚
(1 + 𝑚𝑚−1)𝐵𝐵𝑚𝑚

�
2
. (A.15) 

Generally speaking, the validity of the inference will hold if the following 

assumptions are satisfied (Rubin 1987, p. 128): (i) proper imputation methods, (ii) 

valid complete-data inferences, and (iii) samples large enough.32 More precise 

 
32 Generally speaking, assumption (ii) holds under the posited true response mechanism, 
specified sampling mechanism, and the true population data distribution (Rubin 1987, p. 116). 
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formulas for those assumptions are listed in formula (3.3.2), (3.3.3), (4.2.3)-(4.2.10) 

in the book by Rubin (1987). 

Appendix 1.1.3 MICE Imputation Algorithm   

This section refers to Van Buuren and Oudshoorn (2000) for detailed descriptions of 

MICE. Let data matrix 𝑋𝑋𝐶𝐶  be �𝑋𝑋1𝐶𝐶 ,𝑋𝑋2𝐶𝐶 ,𝑋𝑋3𝐶𝐶 , … ,𝑋𝑋𝑝𝑝𝐶𝐶�𝑛𝑛×𝑝𝑝
 consisting of 𝑝𝑝 predictors that 

are all complete. Let data matrix 𝑋𝑋𝐼𝐼𝐼𝐼  be �𝑋𝑋1𝐼𝐼𝐼𝐼 ,𝑋𝑋2𝐼𝐼𝐼𝐼 ,𝑋𝑋3𝐼𝐼𝐼𝐼 , … ,𝑋𝑋𝑞𝑞𝐼𝐼𝐼𝐼�𝑛𝑛×𝑞𝑞
 consisting of 𝑞𝑞 

predictors that are all incomplete. The problem is to impute the missing values of 𝑋𝑋𝐼𝐼𝐼𝐼  

by drawing from 𝑃𝑃(𝑋𝑋𝐼𝐼𝐼𝐼), the unconditional multivariate distribution of 𝑋𝑋𝐼𝐼𝐼𝐼 . Let 𝑡𝑡 

denote an iteration counter. Assuming that data are missing at random (MAR), one 

may repeat the following sequence of Gibbs sampler iterations, i.e., drawing the 

incomplete varaible conditional on the complete variables and the most recently 

drawn values of all other incomplete variables. 

For 𝑋𝑋1𝐼𝐼𝐼𝐼: draw imputations 𝑋𝑋1
𝐼𝐼𝐼𝐼(𝑡𝑡+1) from  

𝑃𝑃 �𝑋𝑋1𝐼𝐼𝐼𝐼�𝑋𝑋2
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋3

𝐼𝐼𝐼𝐼(𝑡𝑡), … ,𝑋𝑋𝑞𝑞
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋1𝐶𝐶 ,𝑋𝑋2𝐶𝐶 , … ,𝑋𝑋𝑝𝑝𝐶𝐶�, 

For 𝑋𝑋2𝐼𝐼𝐼𝐼: draw imputations 𝑋𝑋2
𝐼𝐼𝐼𝐼(𝑡𝑡+1) from  

𝑃𝑃 �𝑋𝑋2𝐼𝐼𝐼𝐼�𝑋𝑋1
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋3

𝐼𝐼𝐼𝐼(𝑡𝑡), … ,𝑋𝑋𝑞𝑞
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋1𝐶𝐶 ,𝑋𝑋2𝐶𝐶 , … ,𝑋𝑋𝑝𝑝𝐶𝐶�, 

… 

For 𝑋𝑋𝑞𝑞𝐼𝐼𝐼𝐼: draw imputations 𝑋𝑋𝑞𝑞
𝐼𝐼𝐼𝐼(𝑡𝑡+1) from  

𝑃𝑃 �𝑋𝑋𝑞𝑞𝐼𝐼𝐼𝐼�𝑋𝑋1
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋2

𝐼𝐼𝐼𝐼(𝑡𝑡), … ,𝑋𝑋𝑞𝑞−1
𝐼𝐼𝐼𝐼(𝑡𝑡),𝑋𝑋1𝐶𝐶 ,𝑋𝑋2𝐶𝐶 , … ,𝑋𝑋𝑝𝑝𝐶𝐶�, 

Rubin and Schafer (1990) show that if 𝑃𝑃(𝑋𝑋𝐼𝐼𝐼𝐼) is multivariate normal, then 

iterating linear regression models like 𝑋𝑋1𝐼𝐼𝐼𝐼 = 𝑋𝑋2
𝐼𝐼𝐼𝐼(𝑡𝑡)𝛽𝛽𝑖𝑖2 + 𝑋𝑋3

𝐼𝐼𝐼𝐼(𝑡𝑡)𝛽𝛽𝑖𝑖3 + ⋯+

𝑋𝑋𝑞𝑞
𝐼𝐼𝐼𝐼(𝑡𝑡)𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 with 𝜀𝜀𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝑖𝑖2� will produce a random draw from the desired 

distribution.  

Appendix 1.2 Lemma 2.1 with Continuous Variable 𝒛𝒛 

Lemma 2.1.    Let ℤ be the value space of the continuous variable 𝑧𝑧. The inequality 
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𝑔𝑔(𝝍𝝍∗) ≥ 𝑔𝑔(𝟎𝟎) holds if 𝝍𝝍∗ is optimum for maximizing function 𝑔𝑔�(𝝍𝝍), where 

𝑔𝑔(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1 , and  

𝑔𝑔�(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ∫ℤ𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑑𝑑𝑧̃𝑧𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1  . 

In the expression of 𝑔𝑔(𝝍𝝍), Pr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍) indicates the marginal probability of 𝑠𝑠 = 𝑠𝑠𝑖𝑖 

conditional on 𝒙𝒙𝑖𝑖, which is obtained by integrating the joint probability of 𝑧𝑧𝑖𝑖 and 𝑠𝑠𝑖𝑖 

conditional on 𝒙𝒙𝑖𝑖 with respect to 𝑧𝑧𝑖𝑖, namely ∫ℤPr(𝑠𝑠𝑖𝑖 , 𝑧̃𝑧|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑑𝑑𝑧̃𝑧. 

Proof sketch: 

First, it can be proved that 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍): 

𝑔𝑔(𝝍𝝍) = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ lnPr(𝑠𝑠𝑖𝑖|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ln∫ℤPr(𝑠𝑠𝑖𝑖 , 𝑧̃𝑧|𝒙𝒙𝑖𝑖;𝝍𝝍,𝜽𝜽∗)𝑑𝑑𝑧̃𝑧𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 = ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ln∫ℤ𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑑𝑑𝑧̃𝑧𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 ≥ ∑ ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑚𝑚
𝑖𝑖=1 + ∑ ∫ℤ𝑞𝑞(𝑧̃𝑧|𝒙𝒙𝑖𝑖 ,𝜽𝜽∗)ln𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧̃𝑧,𝒙𝒙𝑖𝑖;𝝍𝝍)𝑑𝑑𝑧̃𝑧𝑚𝑚+𝑛𝑛

𝑖𝑖=𝑚𝑚+1   

 = 𝑔𝑔�(𝝍𝝍). 

The first equality holds since the relationship between parameter 𝝍𝝍 and 𝜽𝜽 are not 

constrained (e.g., by imposing a prior assumption). The last inequality is supported by 

Jensen’s inequality. 

When 𝝍𝝍 = 𝟎𝟎, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑧𝑧𝑖𝑖 ,𝒙𝒙𝑖𝑖;𝝍𝝍 = 𝟎𝟎) is constant with respect to 𝑧𝑧𝑖𝑖. Under this 

condition, 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍) holds with equality, namely 𝑔𝑔(𝟎𝟎) = 𝑔𝑔�(𝟎𝟎). Since 𝝍𝝍∗ is 

optimum for maximizing 𝑔𝑔�(𝝍𝝍), there is 𝑔𝑔�(𝝍𝝍∗) ≥ 𝑔𝑔�(𝟎𝟎). Since 𝑔𝑔(𝝍𝝍) ≥ 𝑔𝑔�(𝝍𝝍) holds in 

general cases, there is 𝑔𝑔(𝝍𝝍∗) ≥ 𝑔𝑔�(𝝍𝝍∗) ≥ 𝑔𝑔�(𝟎𝟎) = 𝑔𝑔(𝟎𝟎). 

Q.E.D. 
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Appendix 1.3 Technical Details of Monte Carlo Likelihood Estimation 

In this appendix section, we present the detailed estimation process for parameters θ 

and 𝝍𝝍.  

The objective function in Equation (2.12) can be written as: 

𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠|𝑥𝑥,𝑦𝑦;𝜽𝜽,𝝍𝝍) = ∑ ln[Pr(𝑠𝑠𝑖𝑖 , 𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +

∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   

 = ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +

∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   

The Expectation of the objective function over the posterior distribution of 𝑧𝑧 given 

observed values of 𝑥𝑥, 𝑦𝑦 and 𝑠𝑠, as well as the parameter estimation at iteration 𝑡𝑡, 

(𝜽𝜽𝑡𝑡 ,𝝍𝝍𝑡𝑡), is: 

Q(𝜽𝜽,𝝍𝝍|𝜽𝜽𝑡𝑡 ,𝝍𝝍𝑡𝑡) = ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +

∑ {∫ ln[Pr(𝑠𝑠𝑖𝑖 , 𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)] × Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕)𝑑𝑑𝑑𝑑}𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   

 = ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +

∑ {∫ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)] ×𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1

Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕)𝑑𝑑𝑑𝑑}  

 = ∑ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖;𝜽𝜽,𝝍𝝍) × 𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)]𝑚𝑚
𝑖𝑖=1 +

∑ {∫ ln[Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧;𝜽𝜽,𝝍𝝍)] × Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕)𝑑𝑑𝑑𝑑}𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1 +

∑ {∫ ln[𝑓𝑓(𝑧𝑧𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽,𝝍𝝍)] × Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕)𝑑𝑑𝑑𝑑}𝑚𝑚+𝑛𝑛
𝑖𝑖=𝑚𝑚+1   

The posterior distribution of 𝑧𝑧 given observed values of 𝑥𝑥, 𝑦𝑦 and 𝑠𝑠, namely 

Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕), can be written as: 

Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕) =
Pr�𝑧𝑧, 𝑠𝑠𝑖𝑖�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕�

Pr�𝑠𝑠𝑖𝑖�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕�
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 =
Pr�𝑧𝑧, 𝑠𝑠𝑖𝑖�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕�

∫Pr�𝑧𝑧, 𝑠𝑠𝑖𝑖�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕�𝑑𝑑𝑑𝑑
   

 ∝ Pr(𝑧𝑧, 𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕)   

 = Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧;𝝍𝝍𝒕𝒕) × 𝑓𝑓(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕)    

Therefore, the expectation is approximated by drawing 𝑧𝑧 from 

Pr(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖;𝜽𝜽𝒕𝒕,𝝍𝝍𝒕𝒕) through the Metropolis–Hastings algorithm, a MCMC method, 

with the target stationary distribution being Pr(𝑠𝑠𝑖𝑖|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧;𝝍𝝍𝒕𝒕) × 𝑓𝑓(𝑧𝑧|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖;𝜽𝜽𝒕𝒕). 

The maximization step maximizes the parameters θ and 𝝍𝝍 in the numerically 

approximated expectation results. Note that, since function Q(𝜽𝜽,𝝍𝝍|𝜽𝜽𝑡𝑡 ,𝝍𝝍𝑡𝑡) is written 

as the sum of the terms of θ and 𝝍𝝍 separately, the optima of parameters θ and 𝝍𝝍 can 

be solved independently. We checked the convergence of the EM algorithm and the 

iterative steps are terminated when the squared distance between the t-th and the t+1-

th iteration for parameter θ is less than 10-6. 

Appendix 1.4 Supplementary Results on Bias Correction 

Appendix 1.4.1 Tabulated Results of Bias in Coefficient Estimation under 

Different Missing Value Percentages 

Figures 2-9, 2-10, and 2-11 in Chapter 2 presented the average absolute bias of the 

three regression coefficients. In this appendix section, we tabulate the results of each 

of the three regression coefficients for different missing value percentages (Tables A-

1 through A-3 for missing value percentage at 10%, 20% and 40%, respectively). 1%, 

5%, and 10% statistical significance are shaded and indicated with ∗∗∗, ∗∗, and ∗, 

respectively.  The results in Tables A1 through A3 are qualitatively similar to Table 

2-10 in Chapter 2. As the missing value percentage increases, the bias of parameter 

estimation increases. This trend is particularly visible for the listwise deletion and the 

ML-MAR methods. The proposed method generates approximately unbiased 

estimates under the majority values of 𝜓𝜓𝑦𝑦and 𝜓𝜓𝑧𝑧even when the missing value 



138 

 

percentage is high. Similar to Table 2-10, the proposed method comes with fewer 

cells having significantly biased parameter estimation and overall lower magnitude in 

the bias. 
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  β0 β1 β2 

Method 
𝜓𝜓𝑦𝑦       

𝜓𝜓𝑧𝑧 0 2 4 6 0 2 4 6 0 2 4 6 

LD 0 0.001 0.130*** 0.154*** 0.158*** -0.002 -0.117*** -0.155*** -0.158*** -0.003 0.115*** 0.155*** 0.160*** 
2 0.001 0.128*** 0.160*** 0.163*** 0.000 -0.111*** -0.168*** -0.177*** -0.006*** -0.001 0.085*** 0.117*** 
4 -0.002 0.105*** 0.154*** 0.161*** 0.000 -0.070*** -0.151*** -0.177*** -0.004* -0.072*** 0.000 0.058*** 
6 0.000 0.081*** 0.138*** 0.156*** 0.002 -0.041*** -0.119*** -0.159*** -0.002 -0.084*** -0.059*** 0.002 

ML-MAR 0 -0.005 0.001 0.002 0.002 0.008 -0.001 -0.003 0.003 -0.017*** -0.001 0.002 -0.002 
2 0.068*** 0.060*** 0.043*** 0.028*** -0.023*** -0.031*** -0.021*** -0.013*** -0.038*** -0.039*** -0.018*** -0.015*** 
4 0.089*** 0.091*** 0.076*** 0.054*** -0.036*** -0.055*** -0.049*** -0.034*** -0.056*** -0.074*** -0.049*** -0.032*** 
6 0.099*** 0.101*** 0.095*** 0.076*** -0.039*** -0.060*** -0.064*** -0.051*** -0.061*** -0.087*** -0.074*** -0.050*** 

ML-MC 0 -0.007 0.001 0.002 0.002 -0.002 -0.003 -0.004* 0.002 -0.002 0.003 0.004* -0.001 
2 0.020*** 0.003 0.003* 0.000 -0.008*** 0.001 -0.001 -0.001 -0.014*** -0.001 0.003 -0.001 
4 -0.002 0.000 0.003 0.000 0.000 0.001 -0.002 -0.001 -0.003 -0.002 0.000 -0.001 
6 0.000 -0.003* 0.001 0.000 0.002 0.001 -0.002 -0.001 -0.002 -0.001 -0.001 0.003 

Table A-1 Estimation of Beta Coefficients (Missing Value Percentage = 10%) 
 

  β0 β1 β2 

Method 
𝜓𝜓𝑦𝑦     

𝜓𝜓𝑧𝑧 0 2 4 6 0 2 4 6 0 2 4 6 

LD 0 -0.016** 0.248*** 0.292*** 0.300*** 0.015* -0.180*** -0.236*** -0.249*** -0.017** 0.181*** 0.236*** 0.248*** 
2 0.004* 0.247*** 0.294*** 0.311*** 0.001 -0.176*** -0.257*** -0.272*** -0.004 -0.002 0.126*** 0.182*** 
4 0.000 0.214*** 0.292*** 0.310*** 0.003 -0.114*** -0.232*** -0.269*** -0.002 -0.120*** 0.000 0.090*** 
6 0.002 0.177*** 0.271*** 0.301*** 0.002 -0.073*** -0.185*** -0.253*** -0.002 -0.138*** -0.094*** 0.000 

ML-MAR 0 -0.006 0.000 -0.001 -0.001 0.021*** -0.002 0.002 0.002 -0.033*** 0.002 0.000 -0.003 
2 0.139*** 0.124*** 0.081*** 0.060*** -0.036*** -0.059*** -0.038*** -0.023*** -0.056*** -0.060*** -0.032*** -0.019*** 
4 0.183*** 0.188*** 0.153*** 0.117*** -0.055*** -0.091*** -0.082*** -0.059*** -0.088*** -0.123*** -0.075*** -0.047*** 
6 0.202*** 0.214*** 0.195*** 0.161*** -0.064*** -0.099*** -0.109*** -0.097*** -0.099*** -0.144*** -0.116*** -0.077*** 

ML-MC 0 -0.003 -0.004 -0.002 -0.002 0.013** -0.004** 0.001 0.002 -0.019*** 0.009*** 0.003 -0.001 
2 0.047*** 0.008*** -0.003* 0.000 -0.009*** -0.004** -0.001 0.001 -0.023*** -0.004* 0.000 0.002 
4 0.004** 0.002 0.002 0.000 0.003* 0.001 0.002 0.001 -0.006*** -0.006** 0.000 0.000 
6 0.002 0.002 0.002 0.000 0.003 -0.001 -0.002 -0.005** -0.002 0.001 0.001 0.002 

Table A-2 Estimation of Beta Coefficients (Missing Value Percentage = 20%) 
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  β0 β1 β2 

Method 
𝜓𝜓𝑦𝑦     

𝜓𝜓𝑧𝑧 0 2 4 6 0 2 4 6 0 2 4 6 

LD 0 -0.003 0.492*** 0.592*** 0.616*** -0.010 -0.266*** -0.363*** -0.385*** 0.011 0.265*** 0.363*** 0.383*** 
2 -0.002 0.493*** 0.593*** 0.618*** 0.001 -0.265*** -0.384*** -0.408*** 0.000 0.000 0.190*** 0.276*** 
4 -0.001 0.458*** 0.586*** 0.620*** 0.002 -0.191*** -0.354*** -0.405*** -0.001 -0.185*** -0.002 0.135*** 
6 -0.001 0.400*** 0.571*** 0.615*** 0.000 -0.122*** -0.300*** -0.380*** 0.001 -0.242*** -0.147*** -0.001 

ML-MAR 0 -0.002 0.000 -0.001 0.001 0.007 0.000 0.000 0.001 -0.005 -0.003 0.002 -0.002 
2 0.277*** 0.269*** 0.198*** 0.146*** -0.055*** -0.099*** -0.076*** -0.049*** -0.084*** -0.083*** -0.041*** -0.026*** 
4 0.392*** 0.408*** 0.347*** 0.280*** -0.092*** -0.154*** -0.154*** -0.118*** -0.139*** -0.192*** -0.107*** -0.063*** 
6 0.436*** 0.475*** 0.437*** 0.370*** -0.113*** -0.163*** -0.195*** -0.170*** -0.159*** -0.251*** -0.180*** -0.113*** 

ML-MC 0 -0.004 0.003 -0.002 -0.001 -0.001 -0.006*** -0.002 -0.001 0.007 0.008*** 0.007*** 0.002 
2 0.191*** 0.048*** 0.000 0.000 -0.031*** -0.015*** -0.005** -0.002 -0.070*** -0.016*** 0.004 0.006** 
4 0.041*** 0.029*** 0.004 0.001 -0.004* -0.009*** -0.001 0.000 -0.025*** -0.022*** 0.000 0.003 
6 0.007*** 0.011*** 0.005** 0.000 -0.003 -0.002 -0.005*** 0.001 -0.004* -0.012*** 0.003 0.002 

Table A-3 Estimation of Beta Coefficients (Missing Value Percentage = 40%) 

Appendix 1.4.2 Results of Common Missing Value Handling Methods Presented in 3D Plots  

 Missing Value Percentage 
 10% missing 20% missing 30% missing 

Listwise Deletion 
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ML-MAR 

   

ML-Monte Carlo 
(proposed method) 

   

Multiple Imputation 
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Conditional Mean Imputation 

(Single Imputation) 

   

Zero Imputation 

   

Mean Imputation 

   
Figure A-2 Bias of Regression Coefficients Using Different Missing Value Handling Methods
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Overall, Table A-4 summarizes the bias of coefficient estimates using difference methods. The commonly used listwise deletion method does not 

cause bias when 𝜓𝜓𝑦𝑦 = 0 (namely when 𝜓𝜓𝑦𝑦 = 0,𝜓𝜓𝑧𝑧 = 0, or 𝜓𝜓𝑦𝑦 = 0,𝜓𝜓𝑧𝑧 ≠ 0). Multiple imputation and maximum likelihood ignoring the missingness 

mechanism generally do not cause bias when 𝜓𝜓𝑧𝑧 = 0 (namely when 𝜓𝜓𝑦𝑦 = 0,𝜓𝜓𝑧𝑧 = 0, or 𝜓𝜓𝑦𝑦 ≠ 0,𝜓𝜓𝑧𝑧 = 0). The proposed method generally obtains unbiased 

estimates under different values of 𝜓𝜓𝑦𝑦 and 𝜓𝜓𝑧𝑧. Zero imputation, mean imputation and conditional mean imputation generally lead to bias under all different 

simulation settings. 

 Simulation settings  
 𝜓𝜓𝑦𝑦 = 0,𝜓𝜓𝑧𝑧 = 0 𝜓𝜓𝑦𝑦 ≠ 0,𝜓𝜓𝑧𝑧 = 0 𝜓𝜓𝑦𝑦 ≠ 0,𝜓𝜓𝑧𝑧 ≠ 0 𝜓𝜓𝑦𝑦 = 0,𝜓𝜓𝑧𝑧 ≠ 0 
Missingness Mechanism  MCAR MAR NMAR NMAR 
Listwise deletion Unbiased Biased Biased Unbiased 
Multiple imputation  Unbiased Unbiased Biased Biased 
ML ignoring missingness mechanism Unbiased Unbiased Biased Biased 
ML incorporating missingness mechanism Unbiased Unbiased Unbiased Unbiased 
Zero Imputation Biased Biased Biased Biased 
Mean imputation Biased Biased Biased Biased 
Conditional Mean Imputation (Single Imputation) Biased Biased Biased Biased 

Table A-4 Comparing Missing Value Handling Methods under Different Simulation Settings 
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Appendix 1.4.3 Results under Alternative Simulation Scenarios 

We further experimented the proposed approach in two alternative simulation 

scenarios to show its robustness to the miss-specification of the missingness 

mechanism and its generalizability. In this appendix section, we tabulate results of 

bias for each of the three regression coefficients, β0, β1 and β2, under the simulation 

settings in which (1) the underlying missingness mechanism is represented with a 

probit model whereas we specify it to be a logit model during the parameter 

estimation process (in Table A-5), (2) the regression model is in a generalized linear 

form where the relationship between the dependent variable and independent 

variables is represented in a logit model (in Table A-6).  1%, 5%, and 10% statistical 

significance are shaded and indicated with ∗∗∗, ∗∗, and ∗, respectively. Results are 

based on one hundred replications for each simulation setting. Results show that the 

proposed method comes with few cells having significantly biased parameter 

estimation. Moreover, since the standard errors of the coefficients, β0, β1 and β2 are 

around 0.03, the few biased cells are unlikely to result in problematic estimates based 

on the benchmark of one half of the standard error (Schafer and Graham 2002). 
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  β0 β1 β2 

Missing% 
𝜓𝜓𝑦𝑦     

𝜓𝜓𝑧𝑧 0 2 4 6 0 2 4 6 0 2 4 6 

10% 0 0.0004 0.0013 -0.0052 -0.0052 -0.0085 -0.0035 -0.0021 0.0025 0.0124*** 0.0024 0.0065 0.0013 
2 0.0002 0.0023 -0.0036 -0.0012 -0.0061 0.0016 0.0044 -0.0010 -0.0036 -0.0031 0.0054 -0.0019 
4 -0.0022 0.0050 -0.0019 -0.0052* -0.0015 0.0032 -0.0045 -0.0007 -0.0008 0.0068 0.0062 -0.0002 
6 0.0030 0.0018 0.0066* -0.0014 -0.0029 0.0016 -0.0079** -0.0035 -0.0004 0.0035 0.0016 0.0014 

20% 0 0.0010 0.0033 0.0000 -0.0078* 0.0005 -0.0090* 0.0020 0.0145*** 0.0052 0.0044 -0.0086** -0.0020 
2 -0.0020 -0.0012 0.0024 -0.0011 -0.0015 0.0083* -0.0012 0.0039 0.0042 0.0026 0.0013 -0.0063 
4 -0.0019 -0.0051 0.0034 -0.0049 -0.0004 0.0074* -0.0003 0.0082** 0.0049 -0.0004 -0.0032 -0.0058 
6 -0.0020 -0.0041 0.0021 -0.0018 0.0038 0.0030 0.0039 0.0015 0.0033 -0.0001 0.0026 0.0009 

30% 0 -0.0071 0.0045 0.004 0.0008 -0.0026 -0.0068 -0.0081* -0.0028 0.0103** 0.0079* 0.0015 0.0001 
2 0.0015 -0.0047 -0.002 0.0000 0.0007 -0.0089* 0.0073 -0.0024 -0.0058 0.0147*** 0.0023 0.0003 
4 0.0014 0.0004 0.0006 0.0011 -0.0052 0.0022 -0.0005 -0.0079* 0.0141*** -0.0004 -0.0004 0.0094* 
6 -0.0033 -0.0023 0.0032 0.0000 -0.0005 0.0043 -0.0064* -0.0045 0.0056 0.0026 0.0079 0.0056 

40% 0 0.0081 0.0128* 0.0064 -0.0053 -0.0129 -0.0160*** -0.0086* -0.0051 0.0222*** 0.0009 0.0046 0.0054 
 2 0.0045 -0.0055 0.0036 -0.0077 -0.0046 0.0025 -0.0001 -0.0071 -0.0064 0.0042 0.0036 0.0034 
 4 0.0011 -0.0003 -0.0004 0.0006 0.0007 0.0031 0.0025 -0.0041 0.0030 -0.0060 -0.0005 0.0085 
 6 -0.0037 -0.0036 0.001 0.0008 -0.0054 0.0002 -0.0028 0.0002 0.0024 -0.0008 -0.0040 -0.0033 

Table A-5 Results of Estimation of Coefficients under Miss-specified Missingness Mechanism 
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  β0 β1 β2 

Missing% 
𝜓𝜓𝑦𝑦     

𝜓𝜓𝑧𝑧 0 2 4 6 0 2 4 6 0 2 4 6 

10% 0 0.0049 0.0084 -0.0159** 0.0006 0.0089 0.0015 -0.0043 0.0000 0.0084 -0.0088 0.0027 -0.0085 
2 -0.0005 -0.0002 -0.0056 0.0003 0.0131 0.0062 0.0033 0.0077 -0.0107 -0.0066 -0.0132 -0.0087 
4 0.0053 -0.0018 -0.0138* 0.0148** -0.0030 0.0073 0.0066 0.0083 -0.0043 -0.0119 -0.0142 -0.0234*** 
6 -0.009 -0.0068 -0.0023 -0.0006 0.0039 0.0047 -0.0003 0.0168** -0.0119 -0.0053 -0.0084 -0.0210** 

20% 0 -0.0053 0.0006 0.0069 -0.0018 0.0027 0.0066 -0.0080 0.0001 -0.0058 0.0027 0.0101 0.0231 
2 0.0039 0.0067 0.0006 0.0030 -0.0010 -0.0073 0.0056 0.0063 -0.0054 -0.0007 0.0000 0.0019 
4 0.0021 0.0057 -0.0154** 0.0034 -0.0002 0.0042 -0.0025 0.0041 0.0047 0.0007 -0.004 0.0084 
6 -0.0091 0.0028 -0.0079 0.0133* 0.0006 -0.0087 0.0106 0.0092 -0.0115 0.0004 -0.0002 -0.0076 

30% 0 -0.0170 0.0170* 0.0144* 0.0104 0.0072 0.0034 0.0018 -0.0027 0.0166 -0.0065 -0.0083 -0.0010 
2 0.0082 0.0074 0.0020 0.0067 -0.0149* -0.0088 0.0057 0.0136 0.0026 -0.0046 -0.0046 -0.0114 
4 -0.0054 -0.0063 0.0003 0.0003 0.0068 0.0020 0.0207** -0.0052 -0.0035 -0.0036 -0.0169 0.0109 
6 -0.0012 0.0121* 0.0031 0.0017 0.0066 0.0031 -0.0028 -0.0108 -0.0010 0.0027 -0.0069 -0.0113 

40% 0 0.0139 0.0278** 0.0206 0.0592*** -0.0206* -0.0181 -0.0323* 0.0437** 0.0325*** -0.0003 0.0560 -0.0684** 
 2 0.0177** 0.0175** 0.0159** 0.0112 0.0152 0.0135 -0.0018 0.0107 -0.0191* -0.0426*** -0.0085 -0.0115 
 4 0.0047 0.0104 -0.0011 -0.0053 -0.0242*** -0.0083 -0.0007 -0.0018 0.0151 -0.0046 -0.0030 -0.0051 
 6 0.0001 0.0016 -0.0003 -0.0076 0.0126 0.0030 0.0158* 0.0154* -0.0120 -0.0076 -0.0110 -0.0132 

Table A-6 Results of Estimation of Coefficients in Generalized Linear Regression  
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Appendix 1.4.4 Experimentation Results when Missing Values Occur in both 

Dependent and Independent Variables 

In this appendix section, we explore the extension of our proposed Monte Carlo 

likelihood estimation to handle the situation where both the dependent variable and 

the independent variable contain missing values. We simulate the same data 

generation process as in Section 2.5.1 as below: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑧𝑧 + 𝜀𝜀, 

where �𝑥𝑥𝑧𝑧�~𝑁𝑁(𝜇𝜇,𝜎𝜎2) , 𝜇𝜇 = �00�, 𝜎𝜎
2 = � 1 0.5

0.5 1 � , 𝜀𝜀~𝑁𝑁(0,1). The values of 

coefficients are set to 𝛽𝛽0  =  0, 𝛽𝛽1 =  1 and 𝛽𝛽2 = −1. One thousand data samples of 

the values of (𝑥𝑥, 𝑧𝑧,𝑦𝑦) are drawn from the above data generating process.  

Missing values are imposed on variables on 𝑧𝑧 and 𝑦𝑦 according to the 

following mechanisms: 

𝑝𝑝(𝑠𝑠𝑧𝑧 = 1|𝑥𝑥,𝑦𝑦, 𝑧𝑧;𝝍𝝍𝑧𝑧) = 1
1+𝑒𝑒−(𝜓𝜓0𝑧𝑧+𝑥𝑥+2𝑦𝑦+𝜓𝜓𝑧𝑧𝑧𝑧𝑧𝑧)  

𝑝𝑝�𝑠𝑠𝑦𝑦 = 1�𝑥𝑥,𝑦𝑦, 𝑧𝑧;𝝍𝝍𝑦𝑦� = 1

1+𝑒𝑒−�𝜓𝜓0𝑦𝑦+𝑥𝑥+𝜓𝜓𝑦𝑦𝑦𝑦𝑦𝑦+3𝑧𝑧�
  

wherein 𝜓𝜓𝑧𝑧𝑧𝑧 takes value from {0,2,4} and 𝜓𝜓𝑦𝑦𝑦𝑦takes value from {0,3,6}.The missing 

value percentage for both variable 𝑧𝑧 and 𝑦𝑦 is set to 20% by solving the intercept term 

𝜓𝜓0𝑧𝑧 or 𝜓𝜓0𝑦𝑦. Letting the value of 𝜓𝜓𝑧𝑧𝑧𝑧 (or 𝜓𝜓𝑦𝑦𝑦𝑦) not to be zero makes the missingness 

mechanism for 𝑧𝑧 (or 𝑦𝑦) NMAR.  

To employ our Monte Carlo based computation approach in multi-variable 

missing scenario, we use Gibbs sampling in the E step to take care of the observations 

where both variables 𝑧𝑧 and 𝑦𝑦 are missing (this is alternative to using Metropolis–

Hastings algorithm to handle observations that only 𝑧𝑧 or 𝑦𝑦 is missing, as indicated in 

Appendix 1.3).  
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We employ the Multivariate Imputation by Chained Equations (MICE) in R 

package (Van Buuren and Groothuis-Oudshoorn 2011) as a benchmark as it is a 

popular method for handling the situation of multiple missing variables (Shah et al. 

2014). Detailed description of the MICE method is presented in Appendix 1.1.3. 

Moreover, we implemented MICE in two ways. First, we employ the data set 

consisting of 𝑥𝑥, incomplete 𝑦𝑦 and incomplete 𝑧𝑧 as the input of the MICE package. 

Second, we additionally include the two dummy variables, 𝑠𝑠𝑧𝑧 and 𝑠𝑠𝑦𝑦, as input to 

allow possibly supplementary information employed by MICE. 

MICE MICE with 
Dummy Variables Monte Carlo based Method 

   

Figure A-3 Bias of Regression Coefficients When Missing Values Occur in 
Both Dependent and Independent Variables 

Figure A-3 above shows average absolute bias of three beta coefficients using 

the two benchmark methods and the proposed method. Results show that MICE, 

which ignores the missingness mechanism generally leads to biased regression 

coefficients. Adding the dummy variables, 𝑠𝑠𝑧𝑧 and 𝑠𝑠𝑦𝑦, does not help to reduce the bias. 

The proposed Monte Carlo based approach generates minimal bias under different 

values of 𝜓𝜓𝑧𝑧𝑧𝑧 and 𝜓𝜓𝑦𝑦𝑦𝑦. Finally, it is worth noting that, although maximum likelihood 

estimation under the situation of missing variables being missing can be 

computationally solved, the theoretical guarantee on the statistical properties under 

NMAR, such as identifiability and consistency of the estimates are under explored. 

Therefore, the computation method implemented in this section can be viewed as a 

sensitivity analysis for analyzing data with multiple incomplete variables.  
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APPENDIX 2  SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

Appendix 2.1 Proof of Theorem 3.2  

Theorem 3.2 According to Lemma 3.1 and Lemma 3.2, for any 𝛿𝛿 > 0, we have: 

Pr�|𝐿𝐿𝑇𝑇 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑝𝑝
𝑝𝑝+𝑞𝑞

𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
� + 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
�� ≤ 𝛿𝛿. 

Proof sketch  

To simplify notations, let 𝜁𝜁 ≡ 𝑝𝑝
𝑝𝑝+𝑞𝑞

𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
� + 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
�. Let 𝑙𝑙𝑖𝑖(𝜽𝜽) denote 

𝑙𝑙�𝒙𝒙𝑖𝑖𝐷𝐷−𝑆𝑆,𝑦𝑦𝑖𝑖𝐷𝐷−𝑆𝑆;𝜽𝜽� or 𝑙𝑙�𝒙𝒙𝑖𝑖𝐷𝐷−𝑆𝑆 ,𝑦𝑦𝑖𝑖𝐷𝐷−𝑆𝑆;𝜽𝜽� – whether the data record is a same-distribution 

or diff-distribution one can be told by the number of terms in the summation (𝑝𝑝 for 

diff-distribution data while 𝑞𝑞 for same-distribution data). 

First, by triangle inequality, we have 

|𝐿𝐿𝑇𝑇 − 𝐸𝐸𝑟𝑟=0| = � 1
𝑝𝑝+𝑞𝑞

∑ [𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖(𝜽𝜽)]𝑝𝑝
𝑖𝑖=1 − 𝑝𝑝

𝑝𝑝+𝑞𝑞
𝐸𝐸𝑟𝑟=0 + 1

𝑝𝑝+𝑞𝑞
∑ [𝑙𝑙𝑖𝑖(𝜽𝜽)]𝑞𝑞
𝑖𝑖=1 − 𝑞𝑞

𝑝𝑝+𝑞𝑞
𝐸𝐸𝑟𝑟=0�    

 ≤ 𝑝𝑝
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| + 𝑞𝑞
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| .  

Thus, we have 

Pr(|𝐿𝐿𝑇𝑇 − 𝐸𝐸𝑟𝑟=0| ≥ 𝜁𝜁) ≤ Pr � 𝑝𝑝
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| + 𝑞𝑞
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝜁𝜁�. 

Then, according to Lemma 3.1 and Lemma 3.2 (adjusting the confidence level of 

Lemma 3.1 and Lemma 3.2 from 𝛿𝛿 to 𝛿𝛿
2
), we have 

Pr� 𝑞𝑞
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑞𝑞
𝑝𝑝+𝑞𝑞

𝑏𝑏
√𝑞𝑞
�1
2

ln �4
𝛿𝛿
�� ≤ 𝛿𝛿

2
, and 

Pr� 𝑝𝑝
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝑝𝑝
𝑝𝑝+𝑞𝑞

𝑎𝑎
√𝑝𝑝
�1
2

ln �4
𝛿𝛿
�� ≤ 𝛿𝛿

2
. 

Finally, according to the union bound: Pr(𝐴𝐴1 ∪ 𝐴𝐴2) ≤ Pr(𝐴𝐴1) + Pr(𝐴𝐴2), we have 

Pr � 𝑝𝑝
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| + 𝑞𝑞
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝜁𝜁� ≤ 𝛿𝛿. 
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Overall, we have 

Pr(|𝐿𝐿𝑇𝑇 − 𝐸𝐸𝑟𝑟=0| ≥ 𝜁𝜁) ≤ Pr � 𝑝𝑝
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝐷𝐷−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| + 𝑞𝑞
𝑝𝑝+𝑞𝑞

|𝐿𝐿𝑆𝑆−𝑆𝑆 − 𝐸𝐸𝑟𝑟=0| ≥ 𝜁𝜁� ≤ 𝛿𝛿. 

Q.E.D. 

Appendix 2.2 Supplemented Results for Figure 3-5  

This sub-section presents (1) results referred to by Footnote 30, in which slightly 

increasing number of same-distribution source data – at least 1.1 times of the number 

of predictors plus ten, are used as the same-distribution source data records (Figure 

A-4); (2) tabulated results of Figure 3-5 (Table A-7), (3) summary statistics for each 

method used in Figure 3-5 (Table A-8). 

  

  

  

Figure A-4 Pairwise Comparison Using More Same-Distribution Source Data 
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 Number of Predictors 

 𝝍𝝍𝒚𝒚 10 20 30 40 50 60 

Figure 3-5(a) 

0.3 -0.0419 
(0.00) 

0.2722 
(0.00) 

0.4749 
(0.00) 

0.7874 
(0.00) 

1.2229 
(0.00) 

1.4902 
(0.00) 

0.5 -0.2172 
(0.00) 

0.1436 
(0.00) 

0.5014 
(0.00) 

0.7967 
(0.00) 

1.1713 
(0.00) 

1.557 
(0.00) 

0.7 -0.339 
(0.00) 

0.0353 
(0.0367) 

0.4033 
(0.00) 

0.7132 
(0.00) 

1.1172 
(0.00) 

1.4346 
(0.00) 

0.9 -0.4365 
(0.00) 

-0.0686 
(0.0001) 

0.2992 
(0.00) 

0.6276 
(0.00) 

1.0443 
(0.00) 

1.265 
(0.00) 

1.1 -0.509 
(0.00) 

-0.1218 
(0.00) 

0.2288 
(0.00) 

0.5704 
(0.00) 

0.8815 
(0.00) 

1.1028 
(0.00) 

1.3 -0.5537 
(0.00) 

-0.1772 
(0.00) 

0.1738 
(0.00) 

0.4915 
(0.00) 

0.7854 
(0.00) 

1.0219 
(0.00) 

1.5 -0.6014 
(0.00) 

-0.2199 
(0.00) 

0.0924 
(0.00) 

0.4237 
(0.00) 

0.6916 
(0.00) 

0.8838 
(0.00) 

Figure 3-5(b) 

0.3 0.0582 
(0.00) 

0.3739 
(0.00) 

0.5767 
(0.00) 

0.8765 
(0.00) 

1.3151 
(0.00) 

1.5701 
(0.00) 

0.5 0.0045 
(0.3606) 

0.3617 
(0.00) 

0.7136 
(0.00) 

0.9851 
(0.00) 

1.354 
(0.00) 

1.7164 
(0.00) 

0.7 -0.0405 
(0.00) 

0.333 
(0.00) 

0.6858 
(0.00) 

0.9759 
(0.00) 

1.3623 
(0.00) 

1.6515 
(0.00) 

0.9 -0.0815 
(0.00) 

0.2848 
(0.00) 

0.6372 
(0.00) 

0.9303 
(0.00) 

1.3365 
(0.00) 

1.525 
(0.00) 

1.1 -0.1185 
(0.00) 

0.2655 
(0.00) 

0.6079 
(0.00) 

0.9134 
(0.00) 

1.2167 
(0.00) 

1.3969 
(0.00) 

1.3 -0.1296 
(0.00) 

0.2413 
(0.00) 

0.5781 
(0.00) 

0.8632 
(0.00) 

1.1314 
(0.00) 

1.3422 
(0.00) 

1.5 -0.1606 
(0.00) 

0.2182 
(0.00) 

0.5234 
(0.00) 

0.8114 
(0.00) 

1.0698 
(0.00) 

1.2256 
(0.00) 

Figure 3-5(c) 

0.3 -0.036 
(0.00) 

0.2646 
(0.00) 

0.4491 
(0.00) 

0.7148 
(0.00) 

1.1271 
(0.00) 

1.3879 
(0.00) 

0.5 -0.1839 
(0.00) 

0.1346 
(0.00) 

0.4515 
(0.00) 

0.6893 
(0.00) 

1.042 
(0.00) 

1.4285 
(0.00) 

0.7 -0.2369 
(0.00) 

0.0786 
(0.00) 

0.4172 
(0.00) 

0.6731 
(0.00) 

1.0616 
(0.00) 

1.3887 
(0.00) 

0.9 -0.2566 
(0.00) 

0.0539 
(0.0047) 

0.3781 
(0.00) 

0.6763 
(0.00) 

1.083 
(0.00) 

1.3116 
(0.00) 

1.1 -0.2521 
(0.00) 

0.0821 
(0.00) 

0.3835 
(0.00) 

0.6981 
(0.00) 

1.0088 
(0.00) 

1.2336 
(0.00) 

1.3 -0.2267 
(0.00) 

0.0897 
(0.00) 

0.3961 
(0.00) 

0.6788 
(0.00) 

0.979 
(0.00) 

1.2194 
(0.00) 

1.5 -0.2189 
(0.00) 

0.0997 
(0.00) 

0.3772 
(0.00) 

0.6666 
(0.00) 

0.9473 
(0.00) 

1.1322 
(0.00) 

Table A-7 Tabulated Results of Figure 3-5 

(Continue on Next Page) 
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 Number of Predictors 
 𝝍𝝍𝒚𝒚 10 20 30 40 50 60 

Figure 3-5(d) 

0.3 0.1001 
(0.00) 

0.1017 
(0.00) 

0.1017 
(0.00) 

0.0891 
(0.00) 

0.0922 
(0.00) 

0.0799 
(0.00) 

0.5 0.2216 
(0.00) 

0.2181 
(0.00) 

0.2122 
(0.00) 

0.1884 
(0.00) 

0.1827 
(0.00) 

0.1594 
(0.00) 

0.7 0.2985 
(0.00) 

0.2977 
(0.00) 

0.2824 
(0.00) 

0.2627 
(0.00) 

0.2451 
(0.00) 

0.2169 
(0.00) 

0.9 0.355 
(0.00) 

0.3534 
(0.00) 

0.338 
(0.00) 

0.3027 
(0.00) 

0.2921 
(0.00) 

0.26 
(0.00) 

1.1 0.3905 
(0.00) 

0.3873 
(0.00) 

0.3791 
(0.00) 

0.3431 
(0.00) 

0.3352 
(0.00) 

0.294 
(0.00) 

1.3 0.4241 
(0.00) 

0.4184 
(0.00) 

0.4043 
(0.00) 

0.3717 
(0.00) 

0.346 
(0.00) 

0.3203 
(0.00) 

1.5 0.4407 
(0.00) 

0.438 
(0.00) 

0.431 
(0.00) 

0.3877 
(0.00) 

0.3782 
(0.00) 

0.3418 
(0.00) 

Figure 3-5(e) 

0.3 0.0059 
(0.3735) 

-0.0076 
(0.1619) 

-0.0259 
(0.00) 

-0.0726 
(0.00) 

-0.0959 
(0.00) 

-0.1023 
(0.00) 

0.5 0.0333 
(0.0001) 

-0.009 
(0.2964) 

-0.0499 
(0.00) 

-0.1073 
(0.00) 

-0.1293 
(0.00) 

-0.1286 
(0.00) 

0.7 0.1021 
(0.00) 

0.0433 
(0.00) 

0.0139 
(0.1067) 

-0.04 
(0.00) 

-0.0556 
(0.00) 

-0.0459 
(0.00) 

0.9 0.1799 
(0.00) 

0.1225 
(0.00) 

0.0789 
(0.00) 

0.0487 
(0.00) 

0.0387 
(0.00) 

0.0466 
(0.00) 

1.1 0.2569 
(0.00) 

0.2039 
(0.00) 

0.1548 
(0.00) 

0.1277 
(0.00) 

0.1273 
(0.00) 

0.1307 
(0.00) 

1.3 0.327 
(0.00) 

0.2668 
(0.00) 

0.2223 
(0.00) 

0.1872 
(0.00) 

0.1936 
(0.00) 

0.1975 
(0.00) 

1.5 0.3824 
(0.00) 

0.3196 
(0.00) 

0.2848 
(0.00) 

0.2429 
(0.00) 

0.2557 
(0.00) 

0.2483 
(0.00) 

Figure 3-5(f) 

0.3 0.0942 
(0.00) 

0.1093 
(0.00) 

0.1276 
(0.00) 

0.1617 
(0.00) 

0.188 
(0.00) 

0.1822 
(0.00) 

0.5 0.1883 
(0.00) 

0.2271 
(0.00) 

0.2621 
(0.00) 

0.2958 
(0.00) 

0.312 
(0.00) 

0.2879 
(0.00) 

0.7 0.1964 
(0.00) 

0.2544 
(0.00) 

0.2686 
(0.00) 

0.3028 
(0.00) 

0.3007 
(0.00) 

0.2627 
(0.00) 

0.9 0.1751 
(0.00) 

0.2309 
(0.00) 

0.259 
(0.00) 

0.254 
(0.00) 

0.2535 
(0.00) 

0.2134 
(0.00) 

1.1 0.1336 
(0.00) 

0.1834 
(0.00) 

0.2243 
(0.00) 

0.2154 
(0.00) 

0.2079 
(0.00) 

0.1633 
(0.00) 

1.3 0.0971 
(0.00) 

0.1516 
(0.00) 

0.182 
(0.00) 

0.1844 
(0.00) 

0.1524 
(0.00) 

0.1228 
(0.00) 

1.5 0.0583 
(0.00) 

0.1185 
(0.00) 

0.1462 
(0.00) 

0.1448 
(0.00) 

0.1225 
(0.00) 

0.0934 
(0.00) 

Table A-7 Tabulated Results of Figure 3-5  

(Continue from Previous Page) 

Note: Rows in each panel indicate different values of 𝜓𝜓𝑦𝑦which are taken from {0.3, 

0.5, 0.7, …, 1.5}. The columns indicate different number of predictors which are 

taken from {10, 20, …, 50, 60}. Numbers in parentheses are the p-values for 

conducting the T-test for comparing MSE of the respective two approaches. 
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 Number of Predictors 
 𝝍𝝍𝒚𝒚 10 20 30 40 50 60 

Dropping 

0.3 0.5279 
(0.0839) 

0.846 
(0.4910) 

1.0546 
(0.6397) 

1.3557 
(0.9621) 

1.8091 
(1.0317) 

2.0594 
(1.0509) 

0.5 0.5125 
(0.0896) 

0.8769 
(0.4093) 

1.242 
(0.6528) 

1.521 
(0.7528) 

1.9157 
(0.9157) 

2.2806 
(1.3921) 

0.7 0.5124 
(0.0975) 

0.89 
(0.3755) 

1.2656 
(0.6714) 

1.5551 
(0.7256) 

1.9814 
(0.9207) 

2.2739 
(0.9993) 

0.9 0.5035 
(0.0952) 

0.8733 
(0.3776) 

1.2507 
(0.5495) 

1.5546 
(0.6804) 

1.9949 
(0.9447) 

2.1874 
(0.9652) 

1.1 0.4944 
(0.0930) 

0.8817 
(0.3931) 

1.2423 
(0.5295) 

1.5566 
(0.7185) 

1.8924 
(0.7333) 

2.0841 
(0.9378) 

1.3 0.4956 
(0.0992) 

0.8715 
(0.3952) 

1.2346 
(0.4901) 

1.5213 
(0.6291) 

1.8419 
(0.7710) 

2.0465 
(0.9316) 

1.5 0.4827 
(0.0954) 

0.8624 
(0.3935) 

1.1864 
(0.4636) 

1.4861 
(0.6260) 

1.7812 
(0.7248) 

1.9408 
(0.7869) 

Transfer - 
equal 

weight 

0.3 0.5698 
(0.0298) 

0.5737 
(0.0295) 

0.5797 
(0.0290) 

0.5682 
(0.0304) 

0.5862 
(0.0306) 

0.5693 
(0.0282) 

0.5 0.7297 
(0.0350) 

0.7332 
(0.0365) 

0.7406 
(0.0334) 

0.7243 
(0.0359) 

0.7445 
(0.0363) 

0.7236 
(0.0325) 

0.7 0.8514 
(0.0380) 

0.8547 
(0.0403) 

0.8623 
(0.0393) 

0.8419 
(0.0387) 

0.8642 
(0.0407) 

0.8392 
(0.0351) 

0.9 0.9399 
(0.0392) 

0.9419 
(0.0410) 

0.9515 
(0.0408) 

0.927 
(0.0410) 

0.9505 
(0.0420) 

0.9224 
(0.0365) 

1.1 1.0033 
(0.0402) 

1.0034 
(0.0418) 

1.0136 
(0.0400) 

0.9862 
(0.0403) 

1.0109 
(0.0430) 

0.9812 
(0.0374) 

1.3 1.0493 
(0.0409) 

1.0487 
(0.0423) 

1.0608 
(0.0401) 

1.0297 
(0.0403) 

1.0565 
(0.0438) 

1.0246 
(0.0373) 

1.5 1.0841 
(0.0404) 

1.0823 
(0.0421) 

1.094 
(0.0407) 

1.0623 
(0.0418) 

1.0896 
(0.0440) 

1.0569 
(0.0377) 

Transfer - 
weighting 

0.3 0.5639 
(0.1339) 

0.5813 
(0.1175) 

0.6056 
(0.1160) 

0.6409 
(0.1328) 

0.682 
(0.1219) 

0.6715 
(0.1236) 

0.5 0.6964 
(0.1804) 

0.7422 
(0.1892) 

0.7905 
(0.1804) 

0.8316 
(0.1715) 

0.8738 
(0.1522) 

0.8521 
(0.1314) 

0.7 0.7493 
(0.1907) 

0.8114 
(0.2123) 

0.8484 
(0.1884) 

0.882 
(0.1574) 

0.9198 
(0.1499) 

0.8851 
(0.1281) 

0.9 0.7601 
(0.1908) 

0.8193 
(0.1936) 

0.8725 
(0.1705) 

0.8783 
(0.1564) 

0.9119 
(0.1386) 

0.8758 
(0.1198) 

1.1 0.7464 
(0.1844) 

0.7996 
(0.1798) 

0.8588 
(0.1564) 

0.8585 
(0.1428) 

0.8836 
(0.1279) 

0.8505 
(0.1151) 

1.3 0.7223 
(0.1729) 

0.7819 
(0.1678) 

0.8385 
(0.1394) 

0.8425 
(0.1341) 

0.8629 
(0.1173) 

0.8271 
(0.0996) 

1.5 0.7017 
(0.1599) 

0.7627 
(0.1523) 

0.8092 
(0.1307) 

0.8194 
(0.1297) 

0.8339 
(0.1107) 

0.8086 
(0.0954) 

Transfer - 
filtering 

0.3 0.4697 
(0.0396) 

0.472 
(0.0438) 

0.478 
(0.0343) 

0.4791 
(0.0610) 

0.494 
(0.0562) 

0.4893 
(0.0672) 

0.5 0.5081 
(0.0578) 

0.5151 
(0.0705) 

0.5284 
(0.0643) 

0.5359 
(0.0904) 

0.5618 
(0.0973) 

0.5642 
(0.1243) 

0.7 0.5529 
(0.0820) 

0.557 
(0.0768) 

0.5798 
(0.0803) 

0.5792 
(0.0848) 

0.6191 
(0.1165) 

0.6224 
(0.1255) 

0.9 0.585 
(0.0721) 

0.5884 
(0.0728) 

0.6135 
(0.0853) 

0.6242 
(0.0992) 

0.6584 
(0.1039) 

0.6624 
(0.1239) 

1.1 0.6128 
(0.0823) 

0.6162 
(0.0794) 

0.6345 
(0.0799) 

0.6432 
(0.0909) 

0.6757 
(0.0983) 

0.6872 
(0.1174) 

1.3 0.6252 
(0.0829) 

0.6303 
(0.0744) 

0.6564 
(0.0798) 

0.6581 
(0.0820) 

0.7105 
(0.1176) 

0.7043 
(0.1064) 

1.5 0.6434 
(0.0887) 

0.6442 
(0.0815) 

0.6631 
(0.0739) 

0.6746 
(0.0878) 

0.7114 
(0.1010) 

0.7152 
(0.1042) 

Table A-8 Summary Statistics for Each Method Used in Figure 3-5 
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Appendix 2.3 Tabulated Results of Figure 3-6  

 Number of Predictors  
 𝝍𝝍𝒚𝒚 10 20 30 40 50 60 

Figure 3-6(a) Bias2  

0.3 -0.1698 
(0.00) 

-0.167 
(0.00) 

-0.1676 
(0.00) 

-0.1641 
(0.00) 

-0.1658 
(0.00) 

-0.1584 
(0.00) 

0.5 -0.3587 
(0.00) 

-0.3559 
(0.00) 

-0.3503 
(0.00) 

-0.3416 
(0.00) 

-0.3506 
(0.00) 

-0.3358 
(0.00) 

0.7 -0.4975 
(0.00) 

-0.4923 
(0.00) 

-0.4868 
(0.00) 

-0.4801 
(0.00) 

-0.4867 
(0.00) 

-0.4703 
(0.00) 

0.9 -0.6007 
(0.00) 

-0.5942 
(0.00) 

-0.5938 
(0.00) 

-0.5731 
(0.00) 

-0.5859 
(0.00) 

-0.5697 
(0.00) 

1.1 -0.6739 
(0.00) 

-0.6671 
(0.00) 

-0.6651 
(0.00) 

-0.6428 
(0.00) 

-0.6571 
(0.00) 

-0.64 
(0.00) 

1.3 -0.7291 
(0.00) 

-0.7199 
(0.00) 

-0.7193 
(0.00) 

-0.6946 
(0.00) 

-0.7104 
(0.00) 

-0.6933 
(0.00) 

1.5 -0.7725 
(0.00) 

-0.7581 
(0.00) 

-0.7632 
(0.00) 

-0.7372 
(0.00) 

-0.7536 
(0.00) 

-0.7334 
(0.00) 

Figure 3-6(b) Variance 
 

0.3 0.128 
(0.00) 

0.4392 
(0.00) 

0.6425 
(0.00) 

0.9515 
(0.00) 

1.3888 
(0.00) 

1.6485 
(0.00) 

0.5 0.1415 
(0.00) 

0.4996 
(0.00) 

0.8517 
(0.00) 

1.1383 
(0.00) 

1.5218 
(0.00) 

1.8928 
(0.00) 

0.7 0.1586 
(0.00) 

0.5276 
(0.00) 

0.8901 
(0.00) 

1.1933 
(0.00) 

1.6039 
(0.00) 

1.9049 
(0.00) 

0.9 0.1643 
(0.00) 

0.5256 
(0.00) 

0.893 
(0.00) 

1.2007 
(0.00) 

1.6302 
(0.00) 

1.8347 
(0.00) 

1.1 0.1649 
(0.00) 

0.5453 
(0.00) 

0.8939 
(0.00) 

1.2132 
(0.00) 

1.5386 
(0.00) 

1.7429 
(0.00) 

1.3 0.1754 
(0.00) 

0.5427 
(0.00) 

0.8931 
(0.00) 

1.1862 
(0.00) 

1.4958 
(0.00) 

1.7152 
(0.00) 

1.5 0.1712 
(0.00) 

0.5383 
(0.00) 

0.8556 
(0.00) 

1.1609 
(0.00) 

1.4452 
(0.00) 

1.6173 
(0.00) 

Table A-9 Tabulated Results of Figure 3-6 

Note: Rows in each panel indicate different values of 𝜓𝜓𝑦𝑦which are taken from {0.3, 

0.5, 0.7, …, 1.5}. The columns indicate different number of predictors which are 

taken from {10, 20, …, 50, 60}. Numbers in parentheses are the p-values for 

conducting the t-test for comparing Bias2/Variance of the respective two approaches. 
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Appendix 2.4 Full Results of Figure 3-7  

 
Figure A-5 Prediction Performance and the Timing of Adjusting the Prediction Model (Full Results) 
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